The invasive macroalga Rugulopteryx okamurae represents an unprecedented case of bioinvasion by marine macroalgae facing the European coasts. Since the first apparition of the species in the Strait of Gibraltar in 2015, its fast dispersion along the introduced habitats constitutes a real challenge to develop monitoring strategies that ahead of its impacts. The present study uses three different approaches to address impacts on the benthic ecosystems, at the same time offers relevant data for future management actions in El Estrecho Natural Park (PNE). Information obtained by monitoring permanent sentinel stations revealed a significant loss in resident species coverage after the moment of maximum growth in 2017. Thus, despite coverage of R. okamurae did not strongly varied in the latter years, impacts generated remain high in the habitats studied. Estimations of the invasive species coverage by combining cartographic image analysis and in situ data predicted a major occupation (over 85% coverage) between 10 and 30 m, coinciding with the maximum rocky surface areas (m2) mapped on the PNE. Furthermore, a Citizen Science research collaboration evidenced impacts on the benthic seascape through an ad hoc exploration of images that allowed a “before” and “after” comparison of the invasion process in the same geographic locations. This has made it possible to graphically demonstrate severe changes in the underwater seascape and, therefore, the general impact of this new biological invasion. The spatial colonization estimations combined with the impacts reported by both scientific [Sessile Bioindicators in Permanent Quadrats (SBPQ) sentinel stations] and civilian (Citizen Science) monitoring methodologies claim the urgent development of further studies that allow the design of monitoring strategies against R. okamurae expansion across the Mediterranean and Atlantic waters.
This study focuses on the dolphins populating the water between Gibraltar and Algeciras in the south Iberian Peninsula, an area subjected to pressure due to high human activity. The area is considered an important feeding and breeding ground for common dolphins (Delphinus delphis). Due to the degree of residence of some specimens, and the large gap in knowledge about the evolution of wounds in D. delphis specimens with lacerations, this work sought to perform the following analyses: identify lacerated individuals; characterize sequences of ‘before – during – after’ with respect to the occurrence of lacerations; and associate the type of injury with its severity. This work will inform future studies by expanding a database on injured individuals and contribute to periodical monitoring of specimens that frequent these geographic areas. Between 2013 and 2017, we were able to track the healing process of five injured individuals of common dolphins from a whale-watching platform thanks to photo identification. The animals exhibited fresh external wounds from different sources. In the majority of individuals, the wound-healing processes lasted 3–21 weeks. The frequency with which sightings are made and knowledge about the local population will help track injured animals, follow their wound evolution, and document their survival rates. The documented injuries inflicted by human interactions described in this paper may include fishing interactions and propeller strikes, probably as a consequence of the high intensity of recreational fishing and whale-watching activities in the area.
The present study constitutes the first evaluation of the space colonization strategies performed by Rugulopteryx okamurae when co-occurring with the resident macroalgal community in the introduced areas. Since the first apparition of the nonindigenous macroalga in the Strait of Gibraltar, its high propagation capacity together with its colonization ability has enhanced the establishment success of the species in detriment of the resident biota. In this study, we carried out observational surveys during 2017–2020 in order to assess the coverage levels of R. okamurae on different lighting conditions, surface orientations, and substrata types (artificial and natural). Results revealed that, beyond the high percent coverages already reported at illuminated and semi-illuminated natural rocky habitats, R. okamurae is able to settle on a wide variety of artificial substrata. The settlement performance of the species was also investigated and different mechanisms underlying the space colonization were proposed. Thus, R. okamurae was observed interacting with 43 resident macroalgal species at generally illuminated rocky habitats of the northern Strait coasts. Six colonization mechanisms were proposed for spatial growth scenarios. Overall, results pointed out that, in most of the cases where the invasive species co-occur with the resident community, R. okamurae would be favored as regards spatial growth success. Competitive interactions and environmental factors which influence results obtained must be addressed in order to fully predict impacts on resident communities. Moreover, together with previous scientific works, overall data provided in this study highlight the need to urgent implement management measures focused on habitats susceptible to be invaded, as well as studies on the ecology and dispersal vectors of R. okamurae in the Strait of Gibraltar and adjacent areas.
A case of intergeneric hybridization in the wild between a female bottlenose dolphin ( Tursiops truncatus ) and a short-beaked common dolphin ( Delphinus delphis ), considered members of ‘ vulnerable’ and ‘endangered’ subpopulations in the Mediterranean, respectively, by the International Union of Conservation of Nature is described in this paper. The birth of the hybrid was registered in the Bay of Algeciras (southern Spain) in August 2016, and the animal has been tracked on frequent trips aboard dolphin-watching platforms. This unique occurrence is the result of an apparent ongoing interaction (10 years) between a female bottlenose dolphin and common dolphins. The calf has a robust body with length similar to Tursiops , while its lateral striping and coloration are typical of Delphinus . It displays the common dolphin’s ‘criss-cross’ pattern. However, the thoracic patch is lighter than in D . delphis and its dorsal area is light grey, with a ‘V’ shape under the dorsal fin. This paper also provides a comprehensive mini-review of hybridizations of T . truncatus with other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.