Certain extracellular proteins produced by several pathogenic microorganisms interfere with the host immune system facilitating microbial colonization and were thus designated virulence-associated immunomodulatory proteins. In this study, a protein with B lymphocyte stimulatory activity was isolated from culture supernatants of Streptococcus agalactiae strain NEM316. This protein, with an apparent molecular mass of 45 kDa, was identified as GAPDH by N-terminal amino acid sequencing. The gapC gene was cloned and expressed in Escherichia coli for the production of a recombinant histidyl-tagged protein. The recombinant GAPDH (rGAPDH), purified in an enzymatically active form, induced in vitro an up-regulation of CD69 expression on B cells from normal and BCR transgenic mice. In addition, rGAPDH induced an increase in the numbers of total, but not of rGAPDH-specific, splenic Ig-secreting cells in C57BL/6 mice treated i.p. with this protein. These in vitro- and in vivo-elicited B cell responses suggest that the B cell stimulatory effect of rGAPDH is independent of BCR specificity. A S. agalactiae strain overexpressing GAPDH showed increased virulence as compared with the wild-type strain in C57BL/6 mice. This virulence was markedly reduced in IL-10-deficient and anti-rGAPDH antiserum-treated mice. These results suggest that IL-10 production, which was detected at higher concentrations in the serum of rGAPDH-treated mice, is important in determining the successfulness of the host colonization by S. agalactiae and they highlight the direct role of GAPDH in this process. Taken together, our data demonstrate that S. agalactiae GAPDH is a virulence-associated immunomodulatory protein.
Glyceraldehyde 3-phosphate dehydrogenases (GAPDH) are cytoplasmic glycolytic enzymes that, despite lacking identifiable secretion signals, have been detected at the surface of several prokaryotic and eukaryotic organisms where they exhibit non-glycolytic functions including adhesion to host components. Group B Streptococcus (GBS) is a human commensal bacterium that has the capacity to cause life-threatening meningitis and septicemia in newborns. Electron microscopy and fluorescence-activated cell sorter (FACS) analysis demonstrated the surface localization of GAPDH in GBS. By addressing the question of GAPDH export to the cell surface of GBS strain NEM316 and isogenic mutant derivatives of our collection, we found that impaired GAPDH presence in the surface and supernatant of GBS was associated with a lower level of bacterial lysis. We also found that following GBS lysis, GAPDH can associate to the surface of many living bacteria. Finally, we provide evidence for a novel function of the secreted GAPDH as an inducer of apoptosis of murine macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.