Autism spectrum disorder (ASD) is a neurodevelopmental condition primarily characterized by an impairment of social interaction combined with the occurrence of repetitive behaviors. ASD starts in childhood and prevails across the lifespan. The variability of its clinical presentation renders early diagnosis difficult. Mutations in synaptic genes and alterations of mitochondrial functions are considered important underlying pathogenic factors, but it is obvious that we are far from a comprehensive understanding of ASD pathophysiology. At the synapse, mitochondria perform diverse functions, which are clearly not limited to their classical role as energy providers. Here, we review the current knowledge about mitochondria at the synapse and summarize the mitochondrial disturbances found in mouse models of ASD and other ASD-related neurodevelopmental disorders, like DiGeorge syndrome, Rett syndrome, Tuberous sclerosis complex, and Down syndrome.
It is now well established that mitochondria are organelles that, far from being static, are subject to a constant process of change. This process, which has been called mitochondrial dynamics, includes processes of both fusion and fission. Loss of Pink1 (PTEN-induced putative kinase 1) function is associated with early onset recessive Parkinson’s disease and it has been proposed that mitochondrial dynamics might be affected by loss of the mitochondrial kinase. Here, we report the effects of silencing Pink1 on mitochondrial fusion and fission events in dopaminergic neuron cell lines. Cells lacking Pink1 were more sensitive to cell death induced by C2-Ceramide, which inhibits proliferation and induces apoptosis. In the same cell lines, mitochondrial morphology was fragmented and this was enhanced by application of forskolin, which stimulates the cAMP pathway that phosphorylates Drp1 and thereby inactivates it. Cells lacking Pink1 had lower Drp1 and Mfn2 expression. Based on these data, we propose that Pink1 may exert a neuroprotective role in part by limiting mitochondrial fission.
Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology.
Ion fluxes across the inner mitochondrial membrane control mitochondrial volume, energy production, and apoptosis. TMBIM5, a highly conserved protein with homology to putative pH-dependent ion channels, is involved in the maintenance of mitochondrial cristae architecture, ATP production, and apoptosis. Here, we demonstrate that overexpressed TMBIM5 can mediate mitochondrial calcium uptake. Under steady-state conditions, loss of TMBIM5 results in increased potassium and reduced proton levels in the mitochondrial matrix caused by attenuated exchange of these ions. To identify the in vivo consequences of TMBIM5 dysfunction, we generated mice carrying a mutation in the channel pore. These mutant mice display increased embryonic or perinatal lethality and a skeletal myopathy which strongly correlates with tissue-specific disruption of cristae architecture, early opening of the mitochondrial permeability transition pore, reduced calcium uptake capability, and mitochondrial swelling. Our results demonstrate that TMBIM5 is an essential and important part of the mitochondrial ion transport system machinery with particular importance for embryonic development and muscle function.
Presenilin 1 (PS1) mutations are the most common cause of familial Alzheimer's disease (FAD). PS1 also plays a role in cellular processes such as calcium homeostasis and autophagy. We hypothesized that mutant presenilins increase cellular vulnerability to stress. We stably expressed human PS1, mutant PS1E280A and mutant PS1Δ9 in mouse neuroblastoma N2a cells. We examined early signs of stress in different conditions: endoplasmic reticulum (ER) stress, calcium overload, oxidative stress, and Aβ 1-42 oligomers toxicity. Additionally, we induced autophagy via serum starvation. PS1 mutations did not have an effect in ER stress but PS1E280A mutation affected autophagy. PS1 overexpression influenced calcium homeostasis and generated mitochondrial calcium overload modifying mitochondrial function. However, the opening of the mitochondrial permeability transition pore (MPTP) was affected in PS1 mutants, being accelerated in PS1E280A and inhibited in PS1Δ9 cells. Altered autophagy in PS1E280A cells was neither modified by inhibition of γ-secretase, nor by ER calcium retention. MPTP opening was directly regulated by γ-secretase inhibitors independent on organelle calcium modulation, suggesting a novel direct role for PS1 and γ-secretase in mitochondrial stress. We identified intrinsic cellular vulnerability to stress in PS1 mutants associated simultaneously with both, autophagic and mitochondrial function, independent of Aβ pathology. Alzheimer Disease (AD) is the most common form of dementia, mainly attributed to altered processing and deposition of extracellular Aβ plaques and intracellular neurofibrillary tangles in the brain 1. Current understanding of AD pathophysiology indicates impairment of several cellular processes such as lipid metabolism, mitochondrial function and autophagy, leading eventually to cellular stress and death. A multifactorial model for AD proposes a cellular phase in which Amyloid beta (Aβ) pathology drives Tau hyperphosphorylation inducing cellular damage 2. Amyloid Precursor Protein (APP), Presenilin 1 (PS1) and Presenilin 2 (PS2) autosomal dominant mutations are causative of familial AD (FAD) 3. FAD is characterized by its severity and earlier disease onset, together with severe brain atrophy indicating increased neuronal death 4. Presenilins are the catalytic component of the γ-secretase complex, playing a role in Aβ generation. The pathological severity of FAD suggests a direct neurodegenerative role of PS1 mutations, whether by increased production of toxic Aβ or by other mechanisms 5. Nevertheless, PS1 has also been related to other cellular functions, such as protein trafficking, Wnt/β-catenin signaling, apoptosis and the disruption of calcium homeostasis 6-8. Accordingly, PS1 mutations have been associated to increased cellular stress or death responses such as endoplasmic reticulum (ER) stress 9 , oxidative stress 10,11 , autophagy 12 , and apoptosis 13. Abnormal calcium homeostasis and its pathological role (calcium overload) in AD have attracted attention during recent years. Calcium ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.