Due to the biological importance of carotenoids, several works have been developed aiming for the reduction of carotenoid degradation, and one notable proposed alternative has been the formation of microcapsules. Therefore, the aim of the current paper was the microencapsulation of carotenogenic extracts from Rhodotorula mucilaginosa and Sporidiobolus pararoseus by a lyophilization method utilizing gum arabic, xanthan gum, sodium alginate and soy protein-like wall materials. The gum arabic showed the greatest efficiency of encapsulation for the R. mucilaginosa (66.3±0.8 %) and S. pararoseus (91.4±0.9 %) carotenogenic extracts, while the soy protein showed the lowest efficiency of encapsulation (40.7±1.1 % for R. mucilaginosa and 68.5±1.5 % for S. pararoseus). Scanning electron micrographs (SEM) showed irregular structure formation that was independent of the material utilized for the encapsulation. In this way, it was possible to observe that the wall materials directly affect the encapsulation efficiencies, morphology, and thermal behavior of the capsules of natural carotenoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.