Background Fermented soya bean meal (FSBM) is believed to have improved nutritional qualities compared with soya bean meal (SBM) and is also cheaper than soya protein concentration (SPC) and fish meal (FM). Therefore, the present study was conducted to compare the effects of FSBM replacing SBM, SPC and FM in diets on growth performance, serum biochemistry profile, short‐chain fatty acid concentrations in digesta, intestinal mucosal enzyme activities, intestinal proinflammatory cytokine concentrations and morphology in weaned piglets. One hundred and twenty 28‐day‐old piglets (Duroc × Landrace × Yorkshire, body weight: 6.73 ± 1.14 kg) were randomly allocated to four treatment diets (six replicate pens with five piglets per pen) containing SBM, SPC, FM or FSBM as the protein source, respectively. Results Dietary FSBM supplementation improved average daily gain (p < 0.05), gain to feed ratio (p < 0.05), and digestibility of dry matter, gross energy, crude protein and organic matter (p < 0.05) in pigs compared with those fed SBM during 0–14 days and reduced diarrhoea rate (p < 0.05) compared with those fed SBM and FM during 0–14 days. Moreover, pigs fed FBSM had greater IgA and IgM contents and antioxidase activities than those provided SBM and SPC on day 14. In addition, the butyrate concentration in the cecum of pigs fed FSBM was greater than those fed the other diets (p < 0.05), and the trypsin activity in duodenum and jejunum of pigs provided FSBM was greater than those fed SBM (p < 0.05). Moreover, higher villus height (p < 0.05) and villus height to crypt depth ratio (p < 0.05) and lower crypt depth (p < 0.05) in the duodenum of pigs fed FSBM were observed, and pigs fed FSBM had a lower (p < 0.05) TNF‐α concentration in jejunum compared with those fed SBM. Conclusions In conclusion, dietary FSBM supplementation to replace SBM, SPC and FM could improve piglets' growth performance, intestinal health and immune function.
Selenium Auricularia cornea culture (SAC) is a new source of organic selenium. Two experiments were conducted to determine the available energy of SAC fed to pigs and to evaluate the effects of dietary SAC supplementation on growth performance, serum biochemical profiles, fecal short chain fatty acids (SCFA), meat quality, tissue selenium concentration, and oxidative stability of fresh meat in growing-finishing pigs. In Experiment (Exp.) 1, 12 barrows with average body weight (BW) of 42.40 ± 5.30 kg were randomly allotted to two groups and fed the basal diet and SAC-supplemented diet, individually. In Exp. 2, 96 growing-finishing pigs (BW: 91.96 ± 7.55 kg) were grouped into four dietary treatments; each treatment contained six replicates with four pigs per replicate. The four treatments fed a control diet and three experimental diets supplemented with 0.6%, 1.2%, and 2.4% SAC, respectively. The trial lasted for 45 days. The results revealed that digestible energy (DE) of SAC was 11.21 MJ/kg. The average daily gain (ADG) was improved in pigs fed 1.2% and 2.4% SAC during day 24 to 45 and the overall period. Dietary 1.2% and 2.4% SAC supplementation had a lower F/G (p < 0.05) than the control diet during different stages. Dietary SAC supplementation increased fecal butyrate contents (p < 0.05), and pigs fed 1.2% and 2.4% SAC diets had a higher MCT1 mRNA expression (p = 0.04) in the colon. Pigs fed 2.4% SAC had higher GSH-Px contents (p < 0.05) in serum, liver, and longissimus dorsi muscle (LDM) than those in the control group. The 2.4% SAC-supplemented group revealed a higher Se content (p < 0.05) in LDM and a lower MDA concentration (p < 0.05) in fresh meat during the simulated retail display on day six. In conclusion, this study suggested that SAC was more effective in improving growth, enhancing the antioxidant status, depositing Se in muscle, and increasing meat oxidative stability of pigs.
IntroductionThe experiment was conducted to evaluate the effects of Ganoderma lingzhi culture (GLC) as a fermented feed on growth performance, serum biochemical profile, meat quality, and intestinal morphology and microbiota in Sanhuang broilers. In addition, the association between gut bacteria and metabolites was investigated via untargeted metabolomic analysis.MethodsA total of 192 Sanhuang broilers (112 days old) with an initial body weight of 1.62 ± 0.19 kg were randomly allocated to four treatments, six replicate pens per treatment with 8 broilers per pen. The four treatments contain a control diet (corn-soybean meal basal diet, CON), a positive control diet (basal diet + 75 mg/kg chlortetracycline, PCON), and the experimental diets supplemented with 1.5 and 3% of GLC, respectively. The trial includes phase 1 (day 1–28) and phase 2 (day 29–56).ResultsThe results showed that broilers in PCON and GLC-added treatments showed a lower FCR (P < 0.05) in phase 2 and overall period and a higher ADG (P < 0.05) in phase 2. On day 56, the concentrations of serum SOD (P < 0.05), and HDL (P < 0.05) and cecal SCFA contents (P < 0.05) were increased in broilers fed GLC diets. Broilers fed GLC also showed a higher microbiota diversity and an elevated abundance of SCFA-related bacteria in the caecum. The association between intestinal bacteria and metabolites was investigated via correlation analysis. The differential metabolites in the caecum, such as L-beta-aspartyl-L-aspartic acid and nicotinamide riboside, were identified.ConclusionIn summary, dietary GCL supplementation could increase growth performance to some extent. Moreover, GLC might benefit broilers' health by improving serum HDL content, antioxidant status, SCFAs contents, bacterial diversity, and probiotic proliferation in the caecum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.