Bax is a major player in the apoptotic process, being at the core of the mitochondria permeabilization events. In spite of the major recent advances in the knowledge of Bax organization within the membrane, the precise behavior of the C-terminal helix α9 remains elusive, since it was absent from the resolved structure of active Bax. The Proline 168 (P168) residue, located in the short loop between α8 and α9, has been the target of site-directed mutagenesis experiments, with conflicting results. We have produced and purified a recombinant mutant Bax-P168A, and we have compared its behavior with that of wild-type Bax in a series of tests on Large Unilamellar Vesicles (LUVs) and isolated mitochondria. We conclude that Bax-P168A had a greater ability to oligomerize and bind to membranes. Bax-P168A was not more efficient than wild-type Bax to permeabilize liposomes to small molecules but was more prone to release cytochrome c from mitochondria.
Edited by Barry HalliwellBax-dependent mitochondrial permeabilization during apoptosis is controlled by multiple factors, including the phosphorylation by the protein kinase AKT. We used the heterologous co-expression of human Bax and AKT1 in yeast to investigate how the kinase modulates the different steps underlying Bax activation. We found that AKT activated Bax and increased its cellular content. Both effects were dependent on Ser184, but a phosphorylation of this residue did not fully explain the effects of AKT. Additional experiments with mutants substituted on Ser184 suggested that the regulation of Bax dynamic equilibrium between the cytosol and mitochondria might be more tightly regulated by Bcl-xL when Bax is phosphorylated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.