In efforts to identify novel small molecules with antiinflammatory properties, we discovered a unique series of tetracyclic indenoquinoxaline derivatives that inhibited lipopolysaccharide (LPS)-induced nuclear factor-B/activating protein 1 activation. Compound IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) was found to be a potent, noncytotoxic inhibitor of pro-inflammatory cytokine [interleukin (IL)-1␣, IL-1, IL-6, IL-10, tumor necrosis factor (TNF)-␣, interferon-␥, and granulocyte-macrophage colony-stimulating factor] and nitric oxide production by human and murine monocyte/macrophages. Three additional potent inhibitors of cytokine production were identified through further screening of IQ-1 analogs. The sodium salt of IQ-1 inhibited LPS-induced TNF-␣ and IL-6 production in MonoMac-6 cells with IC 50 values of 0.25 and 0.61 M, respectively. Screening of 131 protein kinases revealed that derivative IQ-3 [11H-indeno[1,2-b]quinoxalin-11-one-O-(2-furoyl)oxime]was a specific inhibitor of the c-Jun N-terminal kinase (JNK) family, with preference for JNK3. This compound, as well as IQ-1 and three additional oxime indenoquinoxalines, were found to be high-affinity JNK inhibitors with nanomolar binding affinity and ability to inhibit c-Jun phosphorylation. Furthermore, docking studies showed that hydrogen bonding interactions of the active indenoquinoxalines with Asn152, Gln155, and Met149 of JNK3 played an important role in enzyme binding activity. Finally, we showed that the sodium salt of IQ-1 had favorable pharmacokinetics and inhibited the ovalbumin-induced CD4 ϩ T-cell immune response in a murine delayed-type hypersensitivity model in vivo. We conclude that compounds with an indenoquinoxaline nucleus can serve as specific small-molecule modulators for mechanistic studies of JNKs as well as a potential leads for the development of anti-inflammatory drugs.
Following a ligand-based drug design approach, a potent mixed formyl peptide receptor 1 (FPR1) and formyl peptide receptor-like 1 (FPRL1) agonist (14a) and a potent and specific FPRL1 agonist (14x) were identified. These compounds belong to a large series of pyridazin-3(2H)-one derivatives substituted with a methyl group at position 6 and a methoxy benzyl at position 4. At position 2, an acetamide side chain is essential for activity. Likewise, the presence of lipophilic and/or electronegative substituents in the position para to the aryl group at the end of the chain plays a critical role for activity. Affinity for FPR1 receptors was evaluated by measuring intracellular calcium flux in HL-60 cells transfected with FPR1, FPRL1, and FPRL2. Agonists were able to activate intracellular calcium mobilization and chemotaxis in human neutrophils. The most potent chemotactic agent (EC50 = 0.6 μM) was the mixed FPR/FPRL1 agonist 14h.
We screened a chemolibrary of drug-like molecules for their ability to activate reactive oxygen species (ROS) production in murine phagocytes, and we identified 26 novel compounds with potent neutrophil activating properties. We used substructure screening, fragment-focusing, and structure-activity relationship analyses to further probe the parent library and defined at least two groups of activators of ROS production in murine neutrophils: t-butyl benzene and thiophene-2-amide-3-carboxylic ester derivatives. Further studies of the active compounds revealed 11 compounds that activated ROS production in human neutrophils, and six of these compounds also activated intercellular Ca 2ϩ mobilization and chemotaxis in human neutrophils. Of the latter compounds, compound 14 (1,3-benzodioxolane-5-carboxylic acid 4Ј-benzyloxy-3Ј-methoxybenzylidene-hydrazide) activated neutrophils at nanomolar concentrations, and Ca 2ϩ mobilization was inhibited by pertussis toxin and N-t-butoxycarbonyl-Phe-Leu-Phe-Leu-Phe (Boc-2), an antagonist of formyl peptide receptors (FPR/FPRL1).Likewise, activation by compound 14 was desensitized after N-formyl-Met-Leu-Phe pretreatment. Similar biological activities were found for compound 104 (1,3-benzodioxolane-5-carboxylic acid 3Ј-bromo-5Ј-ethoxy-4Ј-hydroxybenzylidenehydrazide), an analog of compound 14. Furthermore, conformational analysis of the activators of chemotaxis and Ca Based on these results, we conclude that compounds 14 and 104 represent novel small-molecule agonists of FPR. These studies enhance our understanding of FPR ligand/receptor interactions and structure/activity relationships of phagocyte agonists.
Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average M r of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor α, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor κB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant.
Epilobium angustifolium has been traditionally used to treat of a number of diseases; however, not much is known regarding its effect on innate immune cells. We found that extracts of E. angustifolium activated functional responses in neutrophils and monocyte/macrophages. Activity‐guided fractionation, followed by mass spectroscopy and NMR analysis, resulted in the identification of oenothein B as the primary component responsible for phagocyte activation. Oenothein B, a dimeric hydrolysable tannin, dose‐dependently induced a number of phagocyte functions in vitro, including intracellular Ca2+ flux, production of reactive oxygen species (ROS), chemotaxis, nuclear factor (NF)‐κB activation, and proinflammatory cytokine production. Furthermore, oenothein B was active in vivo, inducing keratinocyte chemoattractant (KC) production and neutrophil recruitment to the peritoneum after intraperitoneal administration. The ability of oenothein B to modulate phagocyte functions in vitro and in vivo suggests that this compound is responsible for at least part of the therapeutic properties of E. angustifolium extracts. This work was supported in part by NIH grants RR‐020185 and RR‐016455 and NIH contract HHSN266200400009C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.