Sexual signals serve as an honest indicator of individual quality, reflecting either developmental and/or maintenance costs. A possible underlying physiological mechanism is oxidative stress, which could mediate energy trade-offs between sexual signals and other quality traits. In ectotherms, thermal performance acts as a key indicator of individual quality and influence signal intensity. We investigated how oxidative state is reflected in visual signals of lizards from different thermal habitats. According to our hypothesis, efficient thermoregulation requires different strategies in different thermal environments. In a habitat with predictable temperature changes, animals are less exposed to suboptimal temperature ranges and selection will, therefore, be stronger on the maximum oxidative damage at optimal body temperature. Contrarily, in a habitat with rather stochastic thermal shifts, individuals are often constricted by suboptimal thermal conditions, and oxidative damage can be limiting on a wide temperature range. We used Iberolacerta cyreni and Psammodromus algirus inhabiting stochastic and predictable thermal environments respectively. We examined two aspects of oxidative stress: the level of reactive oxygen metabolites at the preferred temperature (maximal ROM) and the temperature range in which animals produce at least 80% of the maximum level of reactive oxygen metabolites (effective ROM range). In I. cyreni, we found that duller coloration was related to a wider effective ROM range, while expression of coloration in P. algirus was negatively correlated with the maximal ROM. Our results suggest that different thermal constraints affect different aspects of oxidative damage which can indicate individual quality and are, therefore, represented in sexual ornaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.