Background Humic substances (HS) are compounds with a complicated structure, present in the humus soil layer, water, lake sediments, peat, brown coal and shales. Due to their similar physicochemical properties to DNA, they may have an adverse effect on the subsequent use of the isolated material. The main aim of this research was to examine the effect of HS on DNA isolation depending on the soil type and land use, taking into account the spectroscopic full characteristics of HS fractions. Methods The research was conducted on eight types of soil sample. Soils represented the most important Soil Reference Groups for temperate climates: Fluvisols, Regosols, Cambisols, Arenosols, Histosols and Luvisols. Soil samples were also collected from areas diversified in terms of use: arable land, grassland and forest. The extraction of HS fractions was performed using the procedure recommended by the International HS Society. The fractional composition of HS was characterized by UV–Vis and fluorescence methods. Soil DNA is extracted by direct cell lysis in the using a CTAB-based method with a commonly-used commercial soil DNA isolation kit. The basis for assessing the quantity and quality of extracted DNA was the Polymerase chain reaction (PCR) reaction since the analysis of soil DNA often relies on the use of PCR to study soil microorganisms. Results Based on the results, it can be concluded that in the presence of a high concentration of HS, the isolated DNA was low quality and the additional purification procedure was necessary. Despite the differentiation of the internal structure of HS fractions, the decisive factor in the efficiency of DNA isolation from soil samples was the total carbon content in HS. Reduced DNA yields can significantly constrain PCR detection limits to levels inadequate for metagenomic analysis, especially from humus-rich soils.
Purpose The aim of this study was to determine the mutual relations between polycyclic aromatic hydrocarbons (PAHs) originated from atmospheric emissions and enzymatic activity and humic substances in soils at differently urbanized area, on an example of the Lublin city, east Poland. Materials and methods The chosen areas represented three differently urbanized environments: old tenement houses and modern residential blocks, mixture of different building and rural landscape, and typical rural environment with smallholding farms, respectively. On each of the urban, suburban, and rural areas, one representative plot was chosen on fallow lands classified as luvisol derived from loess. The soil samples were collected from the top 25 cm layer. The following properties were determined: pH, organic carbon, total nitrogen, humic and fulvic acids, PAHs content (14 PAHs from US EPA list), and the activities of the following enzymes: dehydrogenases, acid phosphatase, alkane phosphatase, protease, and urease. Results and discussion Higher contents of organic C and total N were found in the rural soil samples. The share of humic acid was similar in all soils investigated, ranging from 19.38 to 25.27%, while fulvic acid values differ significantly between urban and rural areas. The urban soils indicated much lower share of fulvic acids (9.78-10.99%) than those of rural (29.02-29.32%). Consequently, the values of the C HA :C FA ratio of the urban soil were approximately two times higher than those of the rural soil. The results showed that both the rate of humification and the activity of dehydrogenases, acid phosphatase, alkaline phosphatase, and proteases in the soils increased in the following sequence: urban < suburban < rural. Conclusions The results showed that an increase of PAHs in the urbanized areas affect other soil properties. The phenanthrene/ anthracene and fluoranthene/pyrene ratios pointed to coal combustion as the principal source of PAHs in the investigated soils. The PAH content in the urbanized area inhibit humification processes in the soil and the activity of dehydrogenases, acid phosphatase, alkaline phosphatase, and proteases.
Humic substances, including humin fraction, play a key role in the fate of organic and inorganic xenobiotics contaminating the environment. Humin is an important fraction of humic substances, which has been the least studied to date. This is due to the difficulties connected with its isolation that pose a number of methodological problems. Methods of humin fraction isolation can be divided into following main groups: (1) digestion of mineral soil components with HF/HCl followed by alkali extraction of HA and FA; (2) alkali extraction of HA and FA followed by extraction of humin by different organic solvents; and (3) alkali extraction of HA and FA followed by HF/HCl digestion of mineral soil components. Nevertheless, each of these methods has different limitations. We described in detail a useful procedure of humin isolation, in which this fraction was not extracted, but isolated from the soil by removing its soluble organic and mineral components. A modified method of HA and FA extraction with 0.1 M NaOH, according to the International Humic Substances Society, was used in the first step. Then, the mineral components in the residue were digested with the 10% HF/HCl. Unlike the procedures oriented to increase the concentration of organic matter, samples were treated several times with the HF/HCl mixture until the mineral fraction was almost completely digested. The main assumption of the method modification was to obtain the highest yield with the lowest possible ash content, but without affecting humin chemical structure. The results showed that the proposed procedure is characterized by a high efficiency and recovery and, therefore, it can be used to isolate high amounts of humin from soil.
Purpose The study aimed to find out whether fluorescence parameters of humic acids (HA), obtained from excitation-emission matrix (EEM) fluorescence spectra, could be used to explain the origin and properties of lake sediments organic matter. Materials and methods The research material was HA extracted from lake sediments. Sediment samples were collected in the summer stagnation, from maximum depth of each lake. Humic acids extraction was performed using the method proposed by the International Humic Substances Society. In extracted HA, the elemental composition, free radical content, UV-Vis, and EEM fluorescence spectra were determined. EEM spectral modeling was performed using a multidirectional statistical methodparallel factor analysis PARAFAC. Results and discussion Four specific, two protein-like (C2 and C4) and humic-and fulvic-like (C1 and C3) components, components responsible for emission of fluorescence were identified in HA extracted from lake sediments. In the obtained EEM spectra, the dominant component was C2, while the smallest participation have C4 component. The mean contribution of C3 and C1 components to the total intensity of fluorescence was almost the same and was about 25%. Significant correlations were obtained between the concentration of EEM components and parameters characterizing the chemical properties of sediments and humic acids. Conclusions The study showed that the EEM fluorescence spectroscopy can be successfully used to characterize natural organic matter in aquatic environments. This method may provide supplementary information on the origin and transformation of organic matter in the water environments. By applying the parameters obtained from PARAFAC modeling, the relative degree of organic matter transformation (component C1) and autotrophic productivity (component C3) may be assessed. The analysis of the component C1 and C4 complete the information about the organic matter origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.