BackgroundParkinson’s Disease is a progressive neurodegenerative disease, characterized by symptoms of motor impairment, resulting from the loss of dopaminergic neurons in the midbrain, however non-neuronal symptoms are also common. Although great advances have been made in the pathogenic understanding of Parkinson’s Disease in the nervous system, little is known about the molecular alterations occurring in other non-neuronal organ systems. In addition, a higher rate of melanoma and non-melanoma skin cancer has been observed in the Parkinson’s Disease population, indicating crosstalk between these diseases.MethodsTo understand the molecular pathogenesis and gene expression alterations of Parkinson’s Disease in peripheral tissues, and in order to explore the possible link between skin cancer and neurodegeneration, whole transcriptomic profiling of patients’ skin was performed. Skin biopsies from 12 patients and matched controls were collected, and processed with high-throughput RNA-sequencing analysis.ResultsThis analysis resulted in a large collection of over 1000 differentially expressed genes, among which clear biological and functional networks could be distinguished. The central functional processes altered in patients skin can be grouped into six broad categories: impaired cellular metabolism and mitochondrial dysfunction, defective protein metabolism, disturbed skin homeostasis, dysfunctional nuclear processes, altered signalling and tumour pathways, as well as disordered immune regulation.ConclusionsThese results demonstrate that the molecular alterations leading to neurodegeneration in the CNS are systemic and manifest also in peripheral tissues, thereby indicating the presence of “skin-brain” crosstalk in Parkinson’s Disease. In addition, the extensive homeostatic imbalance and basal stress can lead to increased susceptibility to external and internal mutagenic hazards in these patients, and thus provide a possible molecular link for the crosstalk between skin cancer and Parkinson’s Disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12883-016-0784-z) contains supplementary material, which is available to authorized users.
Transcriptomics in Parkinson’s disease offers insights into the pathogenesis of Parkinson’s disease but obtaining brain tissue has limitations. In order to bypass this issue, we profile and compare differentially expressed genes and enriched pathways (KEGG) in two peripheral tissues (blood and skin) of 12 Parkinson’s disease patients and 12 healthy controls using RNA-sequencing technique and validation with RT-qPCR. Furthermore, we compare our results to previous Parkinson’s disease post mortem brain tissue and blood results using the robust rank aggregation method. The results show no overlapping differentially expressed genes or enriched pathways in blood vs. skin in our sample sets (25 vs. 1068 differentially expressed genes with an FDR ≤ 0.05; 1 vs. 9 pathways in blood and skin, respectively). A meta-analysis from previous transcriptomic sample sets using either microarrays or RNA-Seq yields a robust rank aggregation list of cortical gene expression changes with 43 differentially expressed genes; a list of substantia nigra changes with 2 differentially expressed genes and a list of blood changes with 1 differentially expressed gene being statistically significant at FDR ≤ 0.05. In cortex 1, KEGG pathway was enriched, four in substantia nigra and two in blood. None of the differentially expressed genes or pathways overlap between these tissues. When comparing our previously published skin transcription analysis, two differentially expressed genes between the cortex robust rank aggregation and skin overlap. In this study, for the first time a meta-analysis is applied on transcriptomic sample sets in Parkinson’s disease. Simultaneously, it explores the notion that Parkinson’s disease is not just a neuronal tissue disease by exploring peripheral tissues. The comparison of different Parkinson’s disease tissues yields surprisingly few significant differentially expressed genes and pathways, suggesting that divergent gene expression profiles in distinct cell lineages, metabolic and possibly iatrogenic effects create too much transcriptomic noise for detecting significant signal. On the other hand, there are signs that point towards Parkinson’s disease-specific changes in non-neuronal peripheral tissues in Parkinson’s disease, indicating that Parkinson’s disease might be a multisystem disorder.
In clinical practice, involuntary vocalizing behaviors are typically associated with Tourette syndrome and other tic disorders. However, they may also be encountered throughout the entire tenor of neuropsychiatry, movement disorders, and neurodevelopmental syndromes. Importantly, involuntary vocalizing behaviors may often constitute a predominant clinical sign, and, therefore, their early recognition and appropriate classification are necessary to guide diagnosis and treatment. Clinical literature and video‐documented cases on the topic are surprisingly scarce. Here, we pooled data from 5 expert centers of movement disorders, with instructive video material to cover the entire range of involuntary vocalizations in humans. Medical literature was also reviewed to document the range of possible etiologies associated with the different types of vocalizing behaviors and to explore treatment options. We propose a phenomenological classification of involuntary vocalizations within different categorical domains, including (1) tics and tic‐like vocalizations, (2) vocalizations as part of stereotypies, (3) vocalizations as part of dystonia or chorea, (4) continuous vocalizing behaviors such as groaning or grunting, (5) pathological laughter and crying, (6) vocalizations resembling physiological reflexes, and (7) other vocalizations, for example, those associated with exaggerated startle responses, as part of epilepsy and sleep‐related phenomena. We provide comprehensive lists of their associated etiologies, including neurodevelopmental, neurodegenerative, neuroimmunological, and structural causes and clinical clues. We then expand on the pathophysiology of the different vocalizing behaviors and comment on available treatment options. Finally, we present an algorithmic approach that covers the wide range of involuntary vocalizations in humans, with the ultimate goal of improving diagnostic accuracy and guiding appropriate treatment. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
The capacity to efficiently control motor output, by either refraining from prepotent actions or disengaging from ongoing motor behaviors, is necessary for our ability to thrive in a stimulus-rich and socially complex environment. Failure to engage in successful inhibitory motor control could lead to aberrant behaviors typified by an excess of motor performance. In tic disorders and Tourette syndrome (TS)the most common tic disorder encountered in clinicssurplus motor output is rarely the only relevant clinical sign. A range of abnormal behaviors is often encountered which are historically viewed as "disinhibition phenomena". Here, we present the different clinical features of TS from distinct categorical domains (motor, sensory, complex behavioral) that evoke the concept of disinhibition and discuss their associations. We also present evidence for their consideration as phenomena of inhibitory dysfunction and provide an overview of studies on TS pathophysiology which support this view. We then critically dissect the concept of disinhibition in TS and illuminate other salient aspects, which should be considered in a unitary pathophysiological approach. We briefly touch upon the dangers of oversimplification and emphasize the necessity of conceptual diversity in the scientific exploration of TS, from disinhibition and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.