Hydrogeochemical monitoring of a basalt-hosted aquifer, which contains Ice Age meteoric water and is situated at 1220 m below sea level in the Tjö rnes Fracture Zone, northern Iceland, has been ongoing since July 2002. Based on hydrogeochemical changes following an earthquake of magnitude (M w ) 5.8 on 16 September 2002, we constrained the timescales of post-seismic fault sealing and water-rock interaction. We interpret that the earthquake ruptured a hydrological barrier, permitting a rapid influx of chemically and isotopically distinct Ice Age meteoric water from a second aquifer. During the two subsequent years, we monitored a chemical and isotopic recovery towards pre-earthquake aquifer compositions, which we interpret to have been mainly facilitated by fault-sealing processes. This recovery was interrupted in November 2004 by a second rupturing event, which was probably induced by two minor earthquakes and which reopened the pathway to the second aquifer. We conclude that the timescale of fault sealing was approximately 2 years and that the approach to isotopic equilibrium (from global meteoric water line) was approximately 18% after >10 4 years.
Transient hydrogeochemical anomalies were detected in a granite-hosted aquifer, which is located at a depth of 110 m, north of the Shillong Plateau, Assam, India, where groundwater chemistry is mainly buffered by feldspar alteration to kaolinite. Their onsets preceded moderate earthquakes on December 9, 2004 (M W = 5.3) and February 15, 2005 (M W = 5.0), respectively, 206 and 213 km from the aquifer. The ratios [Na+K]/Si, Na/K and [Na+K]/Ca, conductivity, alkalinity and chloride concentration began increasing 3-5 weeks before the M W = 5.3 earthquake. By comparison with field, experimental and theoretical studies, we interpret a transient switchover between source aquifers, which induced an influx of groundwater from a second aquifer, where groundwater chemistry was dominantly buffered by the alteration of feldspar to smectite. This could have occurred in response to fracturing of a hydrological barrier. The ratio Ba/Sr began decreasing 3-6 days before the M W = 5.0 earthquake. We interpret a transient switchover to anorthite dissolution caused by exposure of fresh plagioclase to groundwater interaction. This could have been induced by microfracturing, locally within the main aquifer. By comparison with experimental studies of feldspar dissolution, we interpret that hydrogeochemical recovery was facilitated by groundwater interaction and clay mineralization, which could have been coupled with fracture sealing. The coincidence in timing of these two hydrogeochemical events with the only two M W C 5 earthquakes in the study area argues in favor of cause-and-effect seismichydrogeochemical coupling. However, reasons for ambiguity include the lack of similar hydrogeochemical anomalies coupled with smaller seismic events near the monitoring station, the >200 km length scale of inferred seismic-hydrogeochemical coupling, and the potential for far-field effects related to the Great SumatraAndaman Islands Earthquake of December 26, 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.