Seven distinct partial cDNAs, similar in sequence to previously described polygalacturonases (PGs), were amplified from cDNA derived from rape pod wall, dehiscence zone and leaves by the polymerase chain reaction. Northern analysis showed that one clone, PG35-8, was expressed at low levels in the dehiscence zone during the first five weeks after anthesis but was very abundantly expressed at week 6. In contrast, no PG35-8-related RNA was detected in the pod wall. Our data suggest that there are temporal and spatial correlations between the breakdown of the middle lamella, of the dehiscence zone cells and the pattern of synthesis of PG35-8 transcripts which may indicate a role for this particular PG in rape pod dehiscence. PG35-8 was used to isolate five cDNA clones from a rape dehiscence zone cDNA library. Restriction enzyme analysis and partial sequencing revealed that they were derived from four highly homologous transcripts which are probably allelic forms of a single gene. One full-length clone, RDPG1, was completely sequenced. The predicted protein of RDPG1 showed its highest identity with PG from apple fruit with an identity of 52%.
A structural gene encoding nitrite reductase (NiR) in bean (Phaseolus vulgaris) has been cloned and sequenced. The NiR gene is present as a single copy encoding a protein of 582 amino acids. The bean NiR protein is synthesized as a precursor with an amino-terminal transit peptide (TP) consisting of 18 amino acid residues. The bean NiR transit peptide shows similarity to the TPs of other known plant NiRs. The NiR gene is expressed in trifoliate leaves and in roots of 20-day old bean plants where transcript accumulation is nitrate-inducible. Gene expression occurs in a circadian rhythm and induced by light in leaves of dark-adapted plants. A particular 100 bp sequence is present in the promoter and in the first intron of the NiR gene. Several copies of this 100 bp sequence are present in the bean genome. Comparisons between the promoter of the bean NiR gene and of two bean nitrate reductase genes (NR1 and NR2) show a limited number of conserved motifs, although the genes are presumed to be co-regulated. Comparisons are also made between the bean NiR promoter and the spinach NiR promoter. Transformation of tobacco plants with the bean NiR promoter fused to the GUS reporter gene (beta-glucuronidase) shows that the bean NiR promoter is nitrate-regulated and that the presence of the 100 bp sequence influences the level of GUS activity. NiR-coding sequences are not required for nitrate regulation but have a quantitative effect on the measured GUS activity.
The oilseed rape (Brassica napus) endo-polygalacturonase (endo-PG) RDPG1 is involved in middle lamella breakdown during silique opening. We investigated tissue-specific expression of RDPG1 in transgenic Arabidopsis thaliana. Cellular localization of endo-PG protein in Arabidopsis siliques was determined by immuno-electron microscopy. An Arabidopsis orthologue, ADPG1, was isolated and aligned with the sequence of RDPG1. The proximal 5' sequences as well as introns are largely conserved. Analysis of the histological GUS-staining pattern of two RDPG1 promoter-GUS (beta-glucuronidase) constructs in transgenic Arabidopsis revealed that the conserved proximal part of the 5'-flanking region directs expression in dehiscence zones of siliques and anthers, floral abscission zones and stylar tissues during pollen tube growth, branch points between stems and pedicel and expression associated with the apical meristem of seedlings, while the distal part of the RDPG1 5'-flanking region contains elements involved in vascular-associated expression in petals, cotyledons and roots. Subsequent RT-PCR analysis, on RNA from the corresponding rape tissues, confirms the staining pattern revealed in transgenic Arabidopsis, thereby justifying the use of Arabidopsis as a reliable model system for analysis of oilseed rape regulatory sequences.
Reduction in the amounts of active gibberellic acids (GA) in elongating cuttings from the ornamental crop Kalanchoe blossfeldiana were pursued by genetic manipulation as an alternative to synthetic growth regulators. An alcohol inducible promoter system was used to control silencing of GA activating enzymes. Apart from affecting the stem length, abnormal levels of GA can lead to altered flowering time, lacking seed maturation and changes in morphology. The effects of down regulating a group of GA 20-oxidases were investigated in fast growing cuttings of K. blossfeldiana Poelln. cv. Molly. The transgenic plants were phenotypically indistinguishable from wild type plants until silencing was induced by low concentrations of ethanol. Treated plants were reduced in height but otherwise appeared normal; flowering was delayed but with large variations in time between the transgenic lines. These data indicate that optimisation of the ethanol treatments can enable us to produce more compact growing plants still maintaining normal flowering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.