The efficient removal of apoptotic cells is critical for the physiological well-being of the organism 1 Ã 4 ; defects in corpse removal have been linked to autoimmune disease 4,5 . While several players regulating the early steps of corpse recognition and internalization have been characterized 6 , the molecules and mechanisms relevant to the subsequent processing of the internalized corpses are poorly understood. Here, we identify a novel pathway for the processing of internalized apoptotic cells in C. elegans and in mammals. First, we show that RAB-5 and RAB-7 are sequentially recruited to phagosomes containing apoptotic corpses as they mature within phagocytes, and that both proteins are required for efficient corpse clearance. We then used targeted genetic screens to identify players regulating the recruitment and/or retention of Rab5 and Rab7 to phagosomes. Seven members of the HOPS complex (a Rab7 activator/effector complex) were required for Rab7 localization or retention on phagosomes. In an effort to identify factors that regulate Rab5 recruitment, we undertook an unbiased reverse genetic screen and identified 61 genes potentially required for corpse removal. In-depth analysis of two candidate genes, vps-34 and dyn-1/ dynamin, showed accumulation of internalized, but undegraded corpses within abnormal phagosomes that are defective in RAB-5 recruitment. Using a series of genetic and biochemical experiments in worms and mammalian cells, we ordered these proteins in a pathway, with DYN-1 functioning upstream of VPS-34, in the recruitment/retention of Rab5 to the nascent phagosome. Further, we identified a novel biochemical complex containing Vps34, dynamin and Rab5 GDP , providing a mechanism for Rab5 recruitment to the nascent phagosome.Removal of apoptotic cells (engulfment) is an essential process that occurs throughout life in multi-cellular animals as part of development, homeostasis, and wound healing1Ã4 , 7 , 8. Engulfment) can be broken down into a series of steps, comprising recognition, internalization, phagosome maturation and finally lysosomal degradation of the apoptotic cell by the phagocyte. In mammals, impaired clearance of apoptotic cell corpses can lead to exposure of autoantigens, resulting in onset of autoimmune diseases, such as systemic lupus erythematosus 4,9,10 . Modulation of the engulfment process is therefore a potential therapeutic target in these conditions. One of the fundamental challenges in understanding how defects in engulfment of apoptotic cells translates into diseased states is the identification of critical players involved in corpse removal and how these proteins orchestrate the different stages of engulfment.The nematode C. elegans represents a powerful genetic tool for the study of programmed cell death 11,12 . Large numbers of cells are induced to die during two periods in the life of a worm: during embryonic and larval morphogenesis and during germ cell development 13 . Genetic studies have identified two evolutionarily conserved signaling pathways invol...
Our findings suggest that the RAD-5 checkpoint protein is not required for HUS-1 to relocalize following DNA damage. Furthermore, our studies reveal a new function of HUS-1 in the prevention of telomere shortening and mortalization of germ cells. DNA damage-induced germ cell death is abrogated in hus-1 mutants, in part, due to the inability of these mutants to activate egl-1 transcription in a cep-1/p53-dependent manner. Thus, HUS-1 is required for p53-dependent activation of a BH3 domain protein in C. elegans.
Ultraviolet (UV) radiation is a mutagen of major clinical importance in humans. UV-induced damage activates multiple signaling pathways, which initiate DNA repair, cell cycle arrest and apoptosis. To better understand these pathways, we studied the responses to UV-C light (254 nm) of germ cells in Caenorhabditis elegans. We found that UV activates the same cellular responses in worms as in mammalian cells. Both UV-induced apoptosis and cell cycle arrest were completely dependent on the p53 homolog CEP-1, the checkpoint proteins HUS-1 and CLK-2, and the checkpoint kinases CHK-2 and ATL-1 (the C. elegans homolog of ataxia telangiectasia and Rad3-related); ATM-1 (ataxia telangiectasia mutated-1) was also required, but only at low irradiation doses. Importantly, mutation of genes encoding nucleotide excision repair pathway components severely disrupted both apoptosis and cell cycle arrest, suggesting that these genes not only participate in repair, but also signal the presence of damage to downstream components of the UV response pathway that we delineate here. Our study suggests that whereas DNA damage response pathways are conserved in metazoans in their general outline, there is significant evolution in the relative importance of individual checkpoint genes in the response to specific types of DNA damage.
Genotoxic stress is a threat to our cells' genome integrity. Failure to repair DNA lesions properly after the induction of cell proliferation arrest can lead to mutations or large-scale genomic instability. Because such changes may have tumorigenic potential, damaged cells are often eliminated via apoptosis. Loss of this apoptotic response is actually one of the hallmarks of cancer. Towards the effort to elucidate the DNA damage-induced signaling steps leading to these biological events, an easily accessible model system is required, where the acquired knowledge can reveal the mechanisms underlying more complex organisms. Accumulating evidence coming from studies in Caenorhabditis elegans point to its usefulness as such. In the worm's germline, DNA damage can induce both cell cycle arrest and apoptosis, two responses that are spatially separated. The latter is a tightly controlled process that is genetically indistinguishable from developmental programmed cell death. Upstream of the central death machinery, components of the DNA damage signaling cascade lie and act either as sensors of the lesion or as transducers of the initial signal detected. This review summarizes the findings of several studies that specify the elements of the DNA damage-induced responses, as components of the cell cycle control machinery, the repairing process or the apoptotic outcome. The validity of C. elegans as a tool to further dissect the complex signaling network of these responses and the high potential for it to reveal important links to cancer and other genetic abnormalities are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.