Although 70–80% of newly diagnosed ovarian cancer patients respond to first-line therapy, almost all relapse and five-year survival remains below 50%. One strategy to increase five-year survival is prolonging time to relapse by improving first-line therapy response. However, no biomarker today can accurately predict individual response to therapy. In this study, we present analytical and prospective clinical validation of a new test that utilizes primary patient tissue in 3D cell culture to make patient-specific response predictions prior to initiation of treatment in the clinic. Test results were generated within seven days of tissue receipt from newly diagnosed ovarian cancer patients obtained at standard surgical debulking or laparoscopic biopsy. Patients were followed for clinical response to chemotherapy. In a study population of 44, the 32 test-predicted Responders had a clinical response rate of 100% across both adjuvant and neoadjuvant treated populations with an overall prediction accuracy of 89% (39 of 44, p < 0.0001). The test also functioned as a prognostic readout with test-predicted Responders having a significantly increased progression-free survival compared to test-predicted Non-Responders, p = 0.01. This correlative accuracy establishes the test’s potential to benefit ovarian cancer patients through accurate prediction of patient-specific response before treatment.
A pilot clinical trial using dendritomas, purified hybrids from the fusion of dendritic/tumor cells combined with a low dose of IL-2, in metastatic melanoma patients was conducted in order to determine its safety and potential immunological and clinical responses. Ten metastatic melanoma patients were enrolled into this study. Dendritoma vaccines were created by fusing dendritic cells stained with green fluorescent dye with irradiated autologous tumor cells stained with red fluorescent dye and purifying the hybrids using immediate fluorescent-activated cell sorting. Initial vaccine was given subcutaneously and followed by IL-2 in serially elevated doses from 3-9 million units/m 2 for 5 days. Repeated vaccinations were administered without IL-2, at 3-month intervals for a maximum of 5 times. Immune reactions were measured by the increase of interferon-Á (IFN-Á) expressing T cells. Vaccine doses ranged from 250,000 to 1,000,000 dendritomas. There was no grade 2 or higher toxicity directly attributable to the vaccine. All patients experienced toxicity due to IL-2 administration (9-grade 2, 3-grade 3, 1-grade 4). Eight of nine evaluable patients demonstrated immunologic reactions by increased IFN-Á expressing T cells. One patient developed partial response at 12 weeks after the first vaccine. Nine months later, this patient achieved a complete response. In addition, two patients had stable disease for 9 and 4 months, respectively; one patient had a mixed response. Our findings demonstrated that dendritoma vaccines with a low dose of IL-2 can be safely administered to patients with metastatic melanoma and induce immunological and clinical responses.
The generation of fused cells between dendritic cells (DC) and tumor cells is a very effective approach for tumor antigen presentation in cancer immunotherapy. However, the application of this approach in clinical studies is limited by the need for established tumor cell lines and the time-consuming procedures for selecting and expanding the fused cells. In the current study, the authors report a rapid, novel approach to produce fused cells between DCs and primary tumor cells from patients with malignant melanoma. Peripheral blood DCs and a primary tumor cell culture were generated from the same patients, labeled with fluorescent green and red dyes, respectively, and fused. The fused cells were isolated by fluorescence-activated cell sorting. Because the fused cells do not need to be expanded, these cell hybrids have been named instant dendritomas. Fluorescence-activated cell sorting analysis showed that instant dendritomas express the key molecules for antigen presentation (HLA-A, B, C; HLA-DR; CD80; and CD86). In vitro studies have shown that instant dendritomas effectively activated autologous CD8+ T lymphocytes to proliferate and secret interferon-gamma. More importantly, the activated CD8+ T lymphocytes effectively lysed the patients' primary tumor cells. This approach represents a practical clinical strategy for cancer immunotherapy.
Vaccination using dendritic/tumor cell hybrids represents a novel and promising cancer immunotherapy. We have developed a technology that can instantly purify the hybrids (dendritomas) from the fusion mixture of dendritic cells (DCs) and tumor cells. Our animal studies and a phase I study of stage IV melanoma patients demonstrated that dendritoma vaccination could be conducted without major toxicity and induced tumor cell-specific immunological and clinical responses. In this pilot study, ten stage IV renal cell carcinoma patients were studied. Dendritomas were made from autologous DCs and tumor cells and administered by subcutaneous injection. After initial vaccination, three escalating doses of IL-2 (3, 6, and 9 million units each) were followed within five days. This treatment regimen was tolerated well without severe adverse events directly related to the dendritoma vaccine. Most adverse events were related to IL-2 administration or pre-existing disease. Patient-specific immune responses were evaluated by flow cytometric measurement of interferon-γ-producing T-cells before and after vaccination in response to stimulation with tumor antigens. Nine out of nine patients eligible for the analysis showed an increase of IFN-γ-expressing CD4 + T cells after vaccination(s); while five out of eight patients eligible for the analysis showed an increase of IFN-γ-expressing CD8 + T cells. Clinical responses were documented in 40% of the patients, three with stabilization of disease and one with a partial response documented by a reduction in tumor size. This pilot study demonstrated that dendritoma vaccines could be administered safely to patients with metastatic renal cell carcinoma, while producing both clinical and immunologic evidence of response.
GPI anchorage of cytokines represents a new approach to locally deliver high doses of cytokines without the severe adverse effects normally accompanied with systematic high-dose administration of these cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.