BackgroundAdult traits of holometabolous insects such as reproduction and survival can be shaped by conditions experienced during larval development. These “carry-over” effects influence not only individual life history and fitness, but can also impact interactions between insect hosts and parasites. Despite this, the implications of larval conditions for the transmission of human, wildlife and plant diseases that are vectored by insects remain poorly understood.MethodsWe used Anopheles stephensi mosquitoes and the rodent malaria, Plasmodium yoelii yoelii, to investigate whether quality of larval habitat influenced vectorial capacity of adult mosquitoes. Larvae were reared under two dietary conditions; one group received a diet commonly used for colony maintenance (0.3 mg/individual/day of Tetrafin fish food) while the other group received a reduced food diet (0.1 mg/individual/day). Upon emergence, adults were provided an infectious blood feed. We assessed the effects of diet on a range of larval and adult traits including larval development times and survival, number of emerging adults, adult body size and survival, gonotrophic cycle length, and mating success. We also estimated the effects of larval diet on parasite infection rates and growth kinetics within the adult mosquitoes.ResultsLarval dietary regime affected larval survival and development, as well as size, reproductive success and survival of adult mosquitoes. Larval diet also affected the intensity of initial Plasmodium infection (oocyst stage) and parasite replication, but without differences in overall infection prevalence at either the oocyst or sporozoite stage.ConclusionsTogether, the combined effects led to a relative reduction in vectorial capacity (a measure of the transmission potential of a mosquito population) in the low food treatment of 70%. This study highlights the need to consider environmental variation at the larval stages to better understand transmission dynamics and control of vector-borne diseases.
Considerable research effort has been directed at understanding the genetic and molecular basis of mosquito innate immune mechanisms. Whether environmental factors interact with these mechanisms to shape overall resistance remains largely unexplored. Here, we examine how changes in mean ambient temperature, diurnal temperature fluctuation and time of day of infection affected the immunity and resistance of Anopheles stephensi to infection with Escherichia coli. We used quantitative PCR to estimate the gene expression of three immune genes in response to challenge with heat-killed E. coli. We also infected mosquitoes with live E. coli and ran bacterial growth assays to quantify host resistance. Both mosquito immune parameters and resistance were directly affected by mean temperature, diurnal temperature fluctuation and time of day of infection. Furthermore, there was a suite of complex two- and three-way interactions yielding idiosyncratic phenotypic variation under different environmental conditions. The results demonstrate mosquito immunity and resistance to be strongly influenced by a complex interplay of environmental variables, challenging the interpretation of the very many mosquito immune studies conducted under standard laboratory conditions.
Background: Adult traits of holometabolous insects such as reproduction and survival can be shaped by conditions experienced during larval development. These "carry-over" effects influence not only individual life history and fitness, but can also impact interactions between insect hosts and parasites. Despite this, the implications of larval conditions for the transmission of human, wildlife and plant diseases that are vectored by insects remain poorly understood. Methods: We used Anopheles stephensi mosquitoes and the rodent malaria, Plasmodium yoelii yoelii, to investigate whether quality of larval habitat influenced vectorial capacity of adult mosquitoes. Larvae were reared under two dietary conditions; one group received a diet commonly used for colony maintenance (0.3 mg/individual/day of Tetrafin fish food) while the other group received a reduced food diet (0.1 mg/individual/day). Upon emergence, adults were provided an infectious blood feed. We assessed the effects of diet on a range of larval and adult traits including larval development times and survival, number of emerging adults, adult body size and survival, gonotrophic cycle length, and mating success. We also estimated the effects of larval diet on parasite infection rates and growth kinetics within the adult mosquitoes. Results: Larval dietary regime affected larval survival and development, as well as size, reproductive success and survival of adult mosquitoes. Larval diet also affected the intensity of initial Plasmodium infection (oocyst stage) and parasite replication, but without differences in overall infection prevalence at either the oocyst or sporozoite stage. Conclusions: Together, the combined effects led to a relative reduction in vectorial capacity (a measure of the transmission potential of a mosquito population) in the low food treatment of 70%. This study highlights the need to consider environmental variation at the larval stages to better understand transmission dynamics and control of vectorborne diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.