We integrated the genomic sequencing of 1,918 breast cancers, including 1,501 hormone receptor-positive tumors, with detailed clinical information and treatment outcomes. In 692 tumors previously exposed to hormonal therapy, we identified an increased number of alterations in genes involved in the mitogen-activated protein kinase (MAPK) pathway and in the estrogen receptor transcriptional machinery. Activating ERBB2 mutations and NF1 loss-of-function mutations were more than twice as common in endocrine resistant tumors. Alterations in other MAPK pathway genes (EGFR, KRAS, among others) and estrogen receptor transcriptional regulators (MYC, CTCF, FOXA1, and TBX3) were also enriched. Altogether, these alterations were present in 22% of tumors, mutually exclusive with ESR1 mutations, and associated with a shorter duration of response to subsequent hormonal therapies.
Summary Somatic mutations of ERBB2 (HER2) and ERBB3 (HER3) are found in a wide range of cancers. Preclinical modelling suggests that a subset lead to constitutive HER2 activation, but most remain biologically uncharacterized. We sought to prospectively define the biologic and therapeutic significance of known oncogenic HER2 and HER3 mutations and variants of unknown biological significance by conducting a multi-histology, genomically selected, ‘basket’ study utilizing the pan-HER kinase inhibitor neratinib (SUMMIT; Clinicaltrials.gov NCT01953926). Efficacy in HER2-mutant cancers varied as a function of both tumour type and mutant allele to a degree not predicted by preclinical models, with the greatest activity seen in breast, cervical and biliary cancers and with tumours harbouring kinase domain missense mutations. This study demonstrates how a molecularly driven clinical trial can be used to further refine our biological understanding of both characterized and novel genomic alterations with potential broad applicability for advancing the paradigm of genome-driven oncology.
Purpose AKT1 E17K mutations are oncogenic and occur in many cancers at a low prevalence. We performed a multihistology basket study of AZD5363, an ATP-competitive pan-AKT kinase inhibitor, to determine the preliminary activity of AKT inhibition in AKT-mutant cancers. Patients and Methods Fifty-eight patients with advanced solid tumors were treated. The primary end point was safety; secondary end points were progression-free survival (PFS) and response according to Response Evaluation Criteria in Solid Tumors (RECIST). Tumor biopsies and plasma cell-free DNA (cfDNA) were collected in the majority of patients to identify predictive biomarkers of response. Results In patients with AKT1 E17K–mutant tumors (n = 52) and a median of five lines of prior therapy, the median PFS was 5.5 months (95% CI, 2.9 to 6.9 months), 6.6 months (95% CI, 1.5 to 8.3 months), and 4.2 months (95% CI, 2.1 to 12.8 months) in patients with estrogen receptor–positive breast, gynecologic, and other solid tumors, respectively. In an exploratory biomarker analysis, imbalance of the AKT1 E17K–mutant allele, most frequently caused by copy-neutral loss-of-heterozygosity targeting the wild-type allele, was associated with longer PFS (hazard ratio [HR], 0.41; P = .04), as was the presence of coincident PI3K pathway hotspot mutations (HR, 0.21; P = .045). Persistent declines in AKT1 E17K in cfDNA were associated with improved PFS (HR, 0.18; P = .004) and response (P = .025). Responses were not restricted to patients with detectable AKT1 E17K in pretreatment cfDNA. The most common grade ≥ 3 adverse events were hyperglycemia (24%), diarrhea (17%), and rash (15.5%). Conclusion This study provides the first clinical data that AKT1 E17K is a therapeutic target in human cancer. The genomic context of the AKT1 E17K mutation further conditioned response to AZD5363.
Phyllodes tumours (PTs) are breast fibroepithelial lesions that are graded based on histological criteria as benign, borderline or malignant. PTs may recur locally. Borderline PTs and malignant PTs may metastasize to distant sites. Breast fibroepithelial lesions, including PTs and fibroadenomas, are characterized by recurrent MED12 exon 2 somatic mutations. We sought to define the repertoire of somatic genetic alterations in PTs and whether these may assist in the differential diagnosis of these lesions. We collected 100 fibroadenomas, 40 benign PTs, 14 borderline PTs and 22 malignant PTs. Six, 6 and 13 benign, borderline and malignant PTs respectively and their matched normal tissue were subjected to targeted massively parallel sequencing (MPS) using the MSK-IMPACT sequencing assay. Recurrent MED12 mutations were found in 56% of PTs; in addition, mutations affecting cancer genes (e.g. TP53, RB1, SETD2 and EGFR) were exclusively detected in borderline and malignant PTs. We found a novel recurrent clonal hotspot mutation in the TERT promoter (−124 C>T) in 52% and TERT gene amplification in 4% of PTs. Laser capture microdissection revealed that these mutations were restricted to the mesenchymal component of PTs. Sequencing analysis of the entire cohort revealed that the frequency of TERT alterations increased from benign (18%), to borderline (57%) and to malignant PTs (68%; P<0.01), and TERT alterations were associated with increased levels of TERT mRNA (P<0.001). No TERT alterations were observed in fibroadenomas. An analysis of TERT promoter sequencing and gene amplification distinguished PTs from fibroadenomas with a sensitivity and a positive predictive value of 100% (CI 95.38%–100%) and 100% (CI 85.86%–100%), respectively, and a sensitivity and a negative predictive value of 39% (CI 28.65%–51.36%) and 68% (CI 60.21%–75.78%), respectively. Our results suggest that TERT alterations may drive the progression of PTs, and may assist in the differential diagnosis between PTs and fibroadenomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.