This work presents a pH sensor platform combining the high performance of iridium oxide (IrOx) fabricated by cyclic voltammetry with inductively-coupled wireless (ICW) transmission. Data included presents flexible potentiometric pH sensors having IrOx as the sensing electrode and a cured Ag/AgCl paste as the pseudo-reference electrode; further investigations concerning performance tailoring via fabrication processes are shown. The fabricated sensors show the best performance with a probe surface area of 1×1 mm 2 , electrodeposited for 100 cyclic voltammetry (CV) sweeps, at 100 mV/s. The sensitivity of the fabricated sensor is typically in the range of 65-75 mV/pH, as tested using either pH 4-9 (six points) or 2-10 (five points) buffers. The sensors exhibiting those sensitivities in buffer solutions yielded a response from "artificial sweat" solutions differing by ~0.4-0.8 pH from a commercial glass pH electrode, while limit-ofquantification (LOQ) was measured to be ~0.04-0.08 pH. The sensing electrode shows a response time of less than 2 seconds and minimal hysteresis effects. Cationic interferences from up to 1M Na+ resulted in +3-8 mV/pH changes in sensitivity, depending on solution pH and probe, with minimal effects to LOQ. The performance under different bending conditions (0º, 30º at 55 mm radius, 45º at 37 mm, and 90º at 20 mm) of the flexible sensor probe show negligible variation. Finally, the presented sensors were integrated with an inductively coupled wireless (ICW) communication system for a demonstration of online monitoring. This sensor platform can easily be miniaturized due to a low count of necessary components and absence of onboard energy storage.
We demonstrate post-fabrication target-wavelength trimming with a gallium phosphide on a silicon nitride integrated photonic platform using controlled electron-beam exposure of hydrogen silsesquioxane cladding. A linear relationship between the electron-beam exposure dose and resonant wavelength red-shift enables deterministic, individual trimming of multiple devices on the same chip to within 30 pm of a single target wavelength. Second harmonic generation from telecom to near infrared at a target wavelength is shown in multiple devices with quality factors on the order of 104. Post-fabrication tuning is an essential tool for targeted wavelength applications including quantum frequency conversion.
We demonstrate post-fabrication target-wavelength trimming with a gallium phosphide on silicon nitride integrated photonic platform using controlled electron-beam exposure of hydrogen silsesquioxane cladding. A linear relationship between the electron-beam exposure dose and resonant wavelength red-shift enables deterministic, individual trimming of multiple devices on the same chip to within 30 pm of a single target wavelength. Second harmonic generation from telecom to near infrared at a target wavelength is shown in multiple devices with quality factors on the order of 10 4 . Post-fabrication tuning is an essential tool for targeted wavelength applications including quantum frequency conversion.
We report an AlGaAsOI quantum photonic circuit with multiple pair sources and tunable interferometers. We demonstrate Hong-Ou-Mandel interference between two microring resonators and a tunable Bell state generator producing Ψ+ and Φ
−
bi-photon entangled states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.