Acquired immunodeficiency syndrome (AIDS)-associated dementia is often characterized by chronic inflammation, with infected macrophage infiltration of the CNS resulting in the production of human immunodeficiency virus type 1 (HIV-1) products, including tat, and neurotoxins that contribute to neuronal loss. In addition to their established role in leukocyte recruitment and activation, we identified an additional role for chemokines in the CNS. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and regulated upon activation normal T cell expressed and secreted (RANTES) were found to protect mixed cultures of human neurons and astrocytes from tat or NMDA-induced apoptosis. Neuronal and astrocytic apoptosis in these cultures was significantly inhibited by co-treatment with MCP-1 or RANTES but not IP-10. The protective effect of RANTES was blocked by antibodies to MCP-1, indicating that RANTES protection is mediated by the induction of MCP-1. The NMDA blocker, MK801, also abolished the toxic effects of both tat and NMDA. Tat or NMDA treatment of mixed cultures for 24 h resulted in increased extracellular glutamate ([Glu] e ) and NMDA receptor 1 (NMDAR1) expression, potential contributors to apoptosis. Co-treatment with MCP-1 inhibited tat and NMDA-induced increases in [Glu] e and NMDAR1, and also reduced the levels and number of neurons containing intracellular tat. These data indicate that MCP-1 may play a novel role as a protective agent against the toxic effects of glutamate and tat.
As HIV infected individuals live longer, the prevalence of HIV associated neurocognitive disorders is increasing, despite successful antiretroviral therapy. CD14+CD16+ monocytes are critical to the neuropathogenesis of HIV as they promote viral seeding of the brain and establish neuroinflammation. The mechanisms by which HIV infected and uninfected monocytes cross the blood brain barrier and enter the central nervous system are not fully understood. We determined that HIV infection of CD14+CD16+ monocytes resulted in their highly increased transmigration across the blood brain barrier in response to CCL2 as compared to uninfected cells, which did not occur in the absence of the chemokine. This exuberant transmigration of HIV infected monocytes was due, at least in part, to increased CCR2 and significantly heightened sensitivity to CCL2. The entry of HIV infected and uninfected CD14+CD16+ monocytes into the brain was facilitated by significantly increased surface JAM-A, ALCAM, CD99, and PECAM-1, as compared to CD14+ cells that are CD16 negative. Upon HIV infection, there was an additional increase in surface JAM-A and ALCAM on CD14+CD16+ monocytes isolated from some individuals. Antibodies to ALCAM and JAM-A inhibited the transmigration of both HIV infected and uninfected CD14+CD16+ monocytes across the BBB, demonstrating their importance in facilitating monocyte transmigration and entry into the brain parenchyma. Targeting CCR2, JAM-A, and ALCAM present on CD14+CD16+ monocytes that preferentially infiltrate the CNS represents a therapeutic strategy to reduce viral seeding of the brain as well as the ongoing neuroinflammation that occurs during HIV pathogenesis.
Chagas' disease is caused by infection with the parasite Trypanosoma cruzi. We report that infected, but not uninfected, human endothelial cells (ECs) released thromboxane A2 (TXA2). Physical chromatography and liquid chromatography-tandem mass spectrometry revealed that TXA2 is the predominant eicosanoid present in all life stages of T. cruzi. Parasite-derived TXA2 accounts for up to 90% of the circulating levels of TXA2 in infected wild-type mice, and perturbs host physiology. Mice in which the gene for the TXA2 receptor (TP) has been deleted, exhibited higher mortality and more severe cardiac pathology and parasitism (fourfold) than WT mice after infection. Conversely, deletion of the TXA2 synthase gene had no effect on survival or disease severity. TP expression on somatic cells, but not cells involved in either acquired or innate immunity, was the primary determinant of disease progression. The higher intracellular parasitism observed in TP-null ECs was ablated upon restoration of TP expression. We conclude that the host response to parasite-derived TXA2 in T. cruzi infection is possibly an important determinant of mortality and parasitism. A deeper understanding of the role of TXA2 may result in novel therapeutic targets for a disease with limited treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.