Ensemble methods are powerful techniques used in machine learning to improve the prediction accuracy of classifier learning systems. In this study, different ensemble learning methods for lung cancer survival prediction were evaluated on the Surveillance, Epidemiology and End Results (SEER) dataset. Data were preprocessed in several steps before applying classification models. The popular ensemble methods Bagging, Adaboost and three classification algorithms, K-Nearest Neighbours, Decision Tree and Neural Networks as base classifiers were evaluated for lung cancer survival prediction. The results empirically showed that ensemble methods are able to evaluate the performance of their base classifiers and they are appropriate methods for analysis of cancer survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.