C/D box small nucleolar RNAs (SNORDs) are small noncoding RNAs, and their best-understood function is to target the methyltransferase fibrillarin to rRNA (for example, SNORD27 performs 2′-Omethylation of A27 in 18S rRNA). Unexpectedly, we found a subset of SNORDs, including SNORD27, in soluble nuclear extract made under native conditions, where fibrillarin was not detected, indicating that a fraction of the SNORD27 RNA likely forms a protein complex different from canonical snoRNAs found in the insoluble nuclear fraction. As part of this previously unidentified complex, SNORD27 regulates the alternative splicing of the transcription factor E2F7 pre-mRNA through direct RNA-RNA interaction without methylating the RNA, likely by competing with U1 small nuclear ribonucleoprotein (snRNP). Furthermore, knockdown of SNORD27 activates previously "silent" exons in several other genes through base complementarity across the entire SNORD27 sequence, not just the antisense boxes. Thus, some SNORDs likely function in both rRNA and pre-mRNA processing, which increases the repertoire of splicing regulators and links both processes.alternative splicing | gene regulation | snoRNAs | pre-mRNA processing S mall nucleolar RNAs (snoRNAs) are 60-to 300-nt-long noncoding RNAs that accumulate in the nucleolus. Based on conserved sequence elements, snoRNAs are classified as C/D box small nucleolar RNAs (SNORDs) or H/ACA box snoRNAs (SNORAs). SNORDs contain sequence elements termed C (RUGAUGA) and D (CUGA) boxes, usually present in duplicates (C′ and D′ boxes), and up to two antisense boxes that hybridize to the target RNA (1). In humans, SNORDs are usually derived from introns. After the splicing reaction, introns are excised as lariats, which are then opened by the debranching enzyme and subsequently degraded. Intronic SNORDs escape this degradation by forming a protein complex that consists of non-histone chromosome protein 2-like 1 (NHP2L1, 15.5K, SNU13), nucleolar protein 5A (NOP56), nucleolar protein 5 (NOP58), and fibrillarin (2-4). The SNORD protein complex forms through the entry of the snoRNA and fibrillarin to a complex containing NHP2L1, NOP58, and at least five assembly factors (5). The SNORD acts as a scaffold for the final protein complex formation and also controls recognition of other RNAs using the antisense boxes. The antisense boxes recognize sequences in rRNA, resulting in the fifth nucleotide upstream of the D or D′ box being 2′-O-methylated by fibrillarin (1). Structural studies indicate that the active form of SNORDs is dimeric (6).The conserved overall structure of SNORDs allows the identification of their putative target RNA binding sites. However, numerous SNORDs without obvious target RNAs have been identified (7-10) and are termed "orphan snoRNAs." Genome-wide deep sequencing experiments identified shorter but stable SNORD fragments that were found in all species tested, ranging from mammals to the protozoan Giardia lamblia (11) and EpsteinBarr virus (12). Fragments longer than 27 nt generated by SNORDs will ...
A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in cause defects in normal development but are not lethal as in human and mouse. Previous studies in indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3' UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi.
Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie humanspecific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes associated with face and vocal tract anatomy went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face-and voiceassociated genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract.
MicroRNAs (miRNAs) are central regulators of gene expression, and a large fraction of them are encoded in introns of RNA polymerase II transcripts. Thus, the biogenesis of intronic miRNAs by the microprocessor and the splicing of their host introns by the spliceosome require coordination between these processing events. This cross-talk is addressed here. We show that key microprocessor proteins Drosha and DGCR8 as well as pre-miRNAs cosediment with supraspliceosomes, where nuclear posttranscriptional processing is executed. We further show that inhibition of splicing increases miRNAs expression, whereas knock-down of Drosha increases splicing. We identified a novel splicing event in intron 13 of MCM7, where the miR-106b-25 cluster is located. The unique splice isoform includes a hosted pre-miRNA in the extended exon and excludes its processing. This indicates a possible mechanism of altering the levels of different miRNAs originating from the same transcript. Altogether, our study indicates interplay between the splicing and microprocessor machineries within a supraspliceosome context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.