SUMMARY c-Myc oncogenic activity is thought to be mediated in part by its ability to generate DNA replication stress and subsequent genomic instability when deregulated. Previous studies have demonstrated a nontranscriptional role for c-Myc in regulating DNA replication. Here, we analyze the mechanisms by which c-Myc deregulation generates DNA replication stress. We find that overexpression of c-Myc alters the spatiotemporal program of replication initiation by increasing the density of early-replicating origins. We further show that c-Myc deregulation results in elevated replication-fork stalling or collapse and subsequent DNA damage. Notably, these phenotypes are independent of RNA transcription. Finally, we demonstrate that overexpression of Cdc45 recapitulates all c-Myc-induced replication and damage phenotypes and that Cdc45 and GINS function downstream of Myc.
Summary DNA interstrand crosslinks (ICLs) are the most toxic lesions induced by chemotherapeutic agents such as Mitomycin C and Cisplatin. By covalently linking both DNA strands, ICLs prevent DNA melting, transcription, and replication. Studies on ICL signaling and repair have been limited because these drugs generate additional DNA lesions that trigger checkpoint signaling. Here, we monitor sensing, signaling from and repairing of a single, site-specific ICL in cell-free extract derived from Xenopus eggs and in mammalian cells. Notably, we demonstrate that ICLs trigger a checkpoint response independently of origin-initiated DNA replication and uncoupling of DNA polymerase and DNA helicase. The Fanconi anemia pathway acts upstream of RPA-ATR-Chk1 to generate the ICL signal. The system also repairs ICLs in a reaction that involves extensive, error-free, DNA synthesis. Repair occurs by both origin-dependent and origin-independent mechanisms. Our data suggest that cell sensitivity to crosslinking agents results from both checkpoint and DNA repair defects.
Several kinase inhibitors that target aberrant signaling pathways in tumor cells have been deployed in cancer therapy. However, their impact on the tumor immune microenvironment remains poorly understood. The tyrosine kinase inhibitor cabozantinib showed striking responses in cancer clinical trial patients across several malignancies. Here we show that cabozantinib rapidly eradicates invasive, poorly-differentiated PTEN/p53 deficient murine prostate cancer. This was associated with enhanced release of neutrophil chemotactic factors from tumor cells, including CXCL12 and HMGB1, resulting in robust infiltration of neutrophils into the tumor. Critically, cabozantinib-induced tumor clearance in mice was abolished by antibody-mediated granulocyte depletion or HMGB1 neutralization or blockade of neutrophil chemotaxis with the CXCR4 inhibitor, plerixafor. Collectively, these data demonstrate that cabozantinib triggers a neutrophil-mediated anti-cancer innate immune response, resulting in tumor clearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.