Glycation of immunoglobulin G (IgG) can result from incubation with a reducing sugar in vitro or during circulation in vivo. Upon injection of a recombinantly produced human therapeutic IgG into humans, changes in the glycation levels could be observed as a function of circulation time. Mass changes on the individual IgG polypeptide chains as the results of glycation were determined using reversed-phase liquid chromatography/mass spectrometry. Changes to the light and heavy chains were low but easily detectable at 0.00092 and 0.0021 glucose (Glc) additions per chain per day, respectively. Levels of glycation found on the Fc portion of IgG isolated from healthy subjects, using a similar analytical approach, were on average 0.045 Glc molecules per fragment. In vivo glycation rates could be approximated in vitro by modeling the physiological glycation reaction with a simplified incubation containing physiological Glc concentrations, pH and temperature but with a high concentration of a single purified IgG. To test the impact of glycation on IgG function, highly glycated IgG1 and IgG2 were prepared containing on average 42-49 Glc molecules per IgG. Binding to FcγIIIa receptors, neonatal Fc receptor or protein A was similar or identical to the non-glycated IgG controls. Although the modifications were well distributed throughout the protein sequence, and at high enough levels to affect the elution position by size-exclusion chromatography, no changes in the tested Fc functions were observed.
This article provides an overview of the upstream technologies used in the industrial production of therapeutic monoclonal antibodies (mAbs) based on the cultivation of mammalian cells. More specifically, in a first section, after a short discussion of relevant biochemical characteristics of antibodies, we review the cell lines currently employed in commercial production and the methods of constructing and isolating production clones. This is followed with a review of the most current methods of commercial scale production and their associated technologies. Selected references and short discussions pertaining to emerging and relevant technologies have been embedded throughout the text in order to give a sense of the overall direction the field is taking.
A significant challenge of traditional glycan mapping techniques is that they do not provide site-specific glycosylation information. Therefore, for proteins containing multiple glycosylation sites, the individual glycan species present at a particular site cannot be differentiated from those species present at the other glycosylation sites on the molecule. Quantification of glycoform has previously been demonstrated using a multiattribute method (MAM), which can quantify multiple post-translational modifications including deamidation, oxidation, glycosylation variants, and fragmentation ( Rogers, R. S.; Nightlinger, N. S.; Livingston, B.; Campbell, P.; Bailey, R.; Balland, A. MAbs 2015 , 7 , 881 - 890 ; ref 1). In this paper we describe the application of an MAM based method for site specific quantification of N-linked glycan heterogeneity present on an IgG1 mAb molecule containing two distinct N-linked glycosylation sites: one present on the heavy chain (HC) variable region (Fab) and the other present on the conserved HC constant region (Fc). MAM is a peptide mapping method utilizing mass spectrometry to detect and quantify specific peptides of interest. The ionization properties of the glycopeptides with different classes of glycan structural variants, including high mannose, sialylated, and terminal galactosylated species were studied in detail. Our results demonstrate that MAM quantification of individual glycan species from both the Fab and Fc N-Linked glycosylation sites is consistent with quantification using the traditional hydrophilic interaction liquid chromatography (HILIC) analysis of enzymatically released and fluorescently labeled glycans. Furthermore, no significant impact from the glycoform on the ionization properties of the glycopeptide is observed. Our work demonstrates that the MAM method is a suitable approach for providing quantitative, site-specific glycan information for profiling of N-linked glycans on immunoglobulins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.