Background Nearly 50% of crop yields are lost to pests and disease, with plants and pathogens locked in an amplified co-evolutionary process of disease outbreaks. Coffee wilt disease, caused by Fusarium xylarioides, decimated coffee production in west and central Africa following its initial outbreak in the 1920s. After successful management, it later re-emerged and by the 2000s comprised two separate epidemics on arabica coffee in Ethiopia and robusta coffee in east and central Africa. Results Here, we use genome sequencing of six historical culture collection strains spanning 52 years to identify the evolutionary processes behind these repeated outbreaks. Phylogenomic reconstruction using 13,782 single copy orthologs shows that the robusta population arose from the initial outbreak, whilst the arabica population is a divergent sister clade to the other strains. A screen for putative effector genes involved in pathogenesis shows that the populations have diverged in gene content and sequence mainly by vertical processes within lineages. However, 15 putative effector genes show evidence of horizontal acquisition, with close homology to genes from F. oxysporum. Most occupy small regions of homology within wider scaffolds, whereas a cluster of four genes occupy a 20Kb scaffold with strong homology to a region on a mobile pathogenicity chromosome in F. oxysporum that houses known effector genes. Lacking a match to the whole mobile chromosome, we nonetheless found close associations with DNA transposons, especially the miniature impala type previously proposed to facilitate horizontal transfer of pathogenicity genes in F. oxysporum. These findings support a working hypothesis that the arabica and robusta populations partly acquired distinct effector genes via transposition-mediated horizontal transfer from F. oxysporum, which shares coffee as a host and lives on other plants intercropped with coffee. Conclusion Our results show how historical genomics can help reveal mechanisms that allow fungal pathogens to keep pace with our efforts to resist them. Our list of putative effector genes identifies possible future targets for fungal control. In turn, knowledge of horizontal transfer mechanisms and putative donor taxa might help to design future intercropping strategies that minimize the risk of transfer of effector genes between closely-related Fusarium taxa.
Coffee wilt disease, caused by the fungus Fusarium xylarioides, is a vascular wilt disease that has affected coffee production in sub-Saharan Africa over the past century. Today, the disease has two host-specific populations specialising on arabica and robusta coffee crops, which grow at high and low altitude, respectively. Here we test whether adaptation to different temperatures contributes to specialisation of the fungi on each crop. Firstly, climate models show that the severity of the arabica and robusta populations of coffee wilt disease correlates with temperature. The robusta population shows higher peak severity than the arabica population overall, but the latter has greater cold tolerance. Secondly, growth assays of thermal performance of fungal strains in vitro show that, while robusta strains grow faster than arabicas at intermediate temperatures, the arabica strains have higher sporulation and spore germination rates at temperatures below 15ºC. The match between environmental patterns of severity in nature with thermal performance of fungal cultures in the laboratory supports a role for temperature adaptation in specialisation on arabica and robusta coffee. Extrapolating our temperature-models to future climate change predicts that disease severity could decline on average due to increased temperature but could increase in some coffee-growing regions.
The first microbial culture collection was established in 1890, and subsequently, over the course of the twentieth century, the number of culture collections grew substantially. One such collection was the CABI-IMI Genetic Resources Collection, informally initiated at the origins of the Commonwealth Mycological Institute in 1920 and established as a UK National Collection in 1947. Its holdings reflect the activities of CABI in agriculture and the environment. Like many collections, it was originally established as a taxonomic reference resource. Over the years, deposits have included strains isolated from disease outbreaks in major crops from all parts of the world. Recent developments in genome sequencing technology and bioinformatic analysis have opened up the potential to characterise historic strains to shed more insights on their biology and evolution. In this paper we describe how the resources held within the CABI-IMI culture collection have helped track the emergence and divergence of Fusarium xylarioides, the coffee wilt pathogen, with a specific focus on the evolution of pathogenicity. Such studies illustrate the value held within the world’s culture collections—their importance in underpinning science and developing our understanding and evolution of plant diseases as well as how the impact of disease can be mitigated in response to climate change, in order to increase yields and feed the world’s burgeoning population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.