Full-length cDNA clones encoding deoxyhypusine synthase (DHS) and eucaryotic initiation factor 5A (eIF-5A) have been isolated from a cDNA expression library prepared from tomato leaves (Lycopersicon esculentum, cv. Match) exposed to environmental stress. DHS mediates the first of two enzymatic reactions that activate eIF-5A by converting a conserved lysine to the unusual amino acid, deoxyhypusine. Recombinant protein obtained by expressing tomato DHS cDNA in Escherichia coli proved capable of carrying out the deoxyhypusine synthase reaction in vitro in the presence of eIF-5A. Of particular interest is the finding that DHS mRNA and eIF-5A mRNA show a parallel increase in abundance in senescing tomato flowers, senescing tomato fruit, and environmentally stressed tomato leaves exhibiting programmed cell death. Western blot analyses indicated that DHS protein also increases at the onset of senescence. It is apparent from previous studies with yeast and mammalian cells that hypusine-modified eIF-5A facilitates the translation of a subset of mRNAs mediating cell division. The present study provides evidence for senescenceinduced DHS and eIF-5A in tomato tissues that may facilitate the translation of mRNA species required for programmed cell death.
We describe the partial purification and characterization of a pore-forming material (PEM) from Entamoeba histolytica. The formation of ion channels by PFM was examined in three systems. (a) PFM depolarizes J774 macrophages and mouse spleen lymphocytes as measured by [3H]TPP+ uptake. (b) PFM induces rapid monovalent cation flux across the membrane of phosphatidylcholine-cholesterol vesicles. (c) PFM confers a voltage-dependent conductance to artificial planar bilayers, which is resolved as a summation of opening of individually conducting steps of 67 pS in 0.1 M KCl. Monomers of PFM are functional; however, a preferential aggregation occurs in the planar bilayer. Activity is pronase, trypsin, and heat sensitive and is stable between pH 5-8. PFM is not secreted by unstimulated amoebae but after exposure to the calcium ionophore A23187, concanavalin A, and E. coli lipopolysaccharide, 5-10% of the total cell content of PFM is released into the medium within 5-10 min. High-performance gel filtration results in an approximately 1,000-fold purification of PFM and gives an Mr of 30,000. This protein may play a role in the cytotoxicity mediated by E. histolytica.
A full-length cDNA clone encoding deoxyhypusine synthase (DHS) was isolated from a cDNA expression library prepared from senescing leaves of Arabidopsis thaliana. Southern blot analysis indicated that DHS is encoded by a single-copy gene in Arabidopsis. During leaf development, the abundance of DHS mRNA in the third pair of rosette leaves peaked at days 14 and 35 after emergence coincident with the initiation of bolting and the later stages of leaf senescence, respectively. These changes in DHS expression were paralleled by corresponding changes in transcript abundance for eIF-5A1, one of three isoforms of eIF-5A in Arabidopsis. Levels of DHS transcript also increased in detached leaves coincident with post-harvest senescence. DHS was suppressed in transgenic plants by introducing antisense full-length or 3'-untranslated Arabidopsis DHS cDNA under the regulation of the constitutive cauliflower mosaic virus (CaMV-35S) promoter. Plants expressing the antisense transgenes had reduced levels of leaf DHS protein and, depending on the level of DHS suppression, exhibited delayed natural leaf senescence, delayed bolting, increased rosette leaf and root biomass, and enhanced seed yield. Suppression of DHS also delayed premature leaf senescence induced by drought stress resulting in enhanced survival in comparison with wild-type plants. In addition, detached leaves from DHS-suppressed plants exhibited delayed post-harvest senescence. These pleiotropic effects of DHS suppression indicate that the protein plays a central role in plant development and senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.