There are currently no standardized phenotypic methods for the screening and detection of AmpC enzymes. This study aimed to evaluate different methods to detect AmpC enzymes in Escherichia coli, Klebsiella spp., and Proteus spp., comparing the results from two disk-based methods and an agar dilution method. AmpC activity was determined for 255 clinical isolates by use of a three-dimensional enzyme assay combined with a multiplex PCR assay for plasmid-borne ampC genes. These results were compared against a disk-based inhibitor assay using various combinations of cefpodoxime and cefoxitin as antibiotic substrates and boronic acid or cloxacillin as an AmpC inhibitor. The presence of enzyme induction by disk approximation was evaluated using imipenem, cefoxitin, and amoxicillin-clavulanate as inducing agents against ceftazidime. Finally, an agar dilution assay was performed, using cefoxitin with and without added cloxacillin. AmpC activity was present in 49.8% of test isolates, 93.7% of which were positive for plasmid-borne ampC genes. CIT-like enzymes were predominant in E. coli, and DHA-like enzymes were predominant in Klebsiella spp. The disk-based inhibitor tests performed better than the agar dilution assay, while detection of AmpC by disk induction had a poor sensitivity. The cefoxitin-cloxacillin disk combination provided the best overall performance, with a sensitivity and specificity of 95%. This study confirmed the accuracy of disk-based inhibitor screening for AmpC enzymes, which proved reliable at detecting CIT-and DHA-like plasmid-borne ampC genes. The methods are simple enough for introduction into clinical microbiology laboratories.
Disc susceptibility testing methods are unreliable at detecting colistin resistance. Dilution methods should be the method of choice for susceptibility testing of colistin.
The combination of colistin and minocycline was found to be bactericidal and synergistic against A. baumannii by time-kill methods. There was no agreement between time-kill and Etest methods for synergy testing.
Aero-tolerant Actinomyces spp. are an under-recognised cause of cutaneous infections, in part because identification using conventional phenotypic methods is difficult and may be inaccurate. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is a promising new technique for bacterial identification, but with limited data on the identification of aero-tolerant Actinomyces spp. This study evaluated the accuracy of a phenotypic biochemical kit, MALDI-TOF MS and genotypic identification methods for the identification of this problematic group of organisms. Thirty aero-tolerant Actinomyces spp. were isolated from soft-tissue infections over a 2-year period. Species identification was performed by 16 s rRNA sequencing and genotypic results were compared with results obtained by API Coryne and MALDI-TOF MS. There was poor agreement between API Coryne and genotypic identification, with only 33% of isolates correctly identified to the species level. MALDI-TOF MS correctly identified 97% of isolates to the species level, with 33% of identifications achieved with high confidence scores. MALDI-TOF MS is a promising new tool for the identification of aero-tolerant Actinomyces spp., but improvement of the database is required in order to increase the confidence level of identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.