Hierarchical clustering is an unsupervised technique, which is a common approach to study protein and gene expression data. In clustering, the patterns of expression of different genes are grouped into distinct clusters, in which the genes in the same cluster are assumed potential to be functionally related or to be influenced by a common upstream factor. Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, the uncertainty in the results obtained is still bothersome. Experimental repetitions are generally performed to overcome the drawbacks of biological variability and technical variability. In this study, the author proposes repeated measurement to evaluate the stability of gene clusters. This paper aims to prove that the stability from the gene clusters, incorporated with repeated measurement, can be used for further analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.