In order to understand the characteristics of ohmic hole-contacts for the inverted/conventional organic light emitting devices, a hole-only device with all ohmic contacts, which is composed of glass/ITO/MoOx/4,4,4-tris[2-naphthyl-phenyl-amino]triphenylamine (2-TNATA)/MoOx/Al, the elements of the electronic structures of MoOx-on-2-TNATA interface and 2-TNATA-on-MoOx interface were investigated by photoemission spectroscopy, with regards to interface energetics, formative mechanism, and a potential charge carrier injection. The electronic structures revealed that the behavior of the interface between MoOx and 2-TNATA was different whether MoOx was deposited on (2-TNATA) or vice versa. The bottom interfaces of 2-TNATA-on-MoOx in this hole-only devices showed no hole-injecting barrier height (Phi(h)B) when the thickness of 2-TNATA was deposited in the range of 0.1 to 5.0 nm on the 10.0 nm-thick MoOx thin films. This has been explained to be attributed to both metal-induced gap states and a chemical reaction at the interfaces. The top interfaces of MoOx-on-2-TNATA in this hole-only device structure also showed no Phi(h)B when a hole was injected from the MoOx-on-2-TNATA interfaces to cathode. The hole-ohmic property in the top interfaces depends on interface dipole by the formation of charge transfer complexes as well as interdiffusion of MoOx into the 2-TNATA film in these interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.