The purpose of this research was to process a mixture of paper waste and garden waste based on material flow analysis and to analyze its parameters based on water content, ash content, heating value, along with Thermogravimetry Analysis (TGA)/Derivative Thermogravimetry (DTG). The garden waste treatment process consists of shredding, drying with a rotary dryer, separator, and then shaving with a hammer mill. Paper waste only needs a shredder process. Then, the mixing process and pelletizing of paper waste as well as garden waste are carried out according to the variation (w/w) 100% paper (K100), 75% paper (K75), 50% paper (K50), 25% paper (K25), and 100% garden waste (K0). The water content ranged from 5.8 to 15.25%. From K0 to K100 samples, the ash content increased from 4.54 to 9.85%. A correlation of 0.9047 was found from samples K0 to K100. There was a correlation between increasing calorific value along with the mixture with paper waste. The caloric value in K0 to K100 increased from 13.11 to 19.03 MJ/kg. The TGA/DTG analysis reduced mass due to water evaporation, devolatilization, and carbonization processes.
This research focuses on the preparation, characterization and catalytic properties of novel magnesium oxide in mesoporous MCM-22 Silica (MgO/MCM-22) for biodiesel production from jatropha oil. The catalysts were prepared by impregnation method and characterized. Then, the catalyst were tested for biodiesel production from jatropha oil where the reaction parameters were studied. The obtained results of the characterization showed that, the prepared catalyst has an amorphous structure with high Si/Al ratio which changes to a more of crystalline structure after successful incorporation of MgO. The result of the transesterification shows that, magnesium oxide (MgO) supported with silica is highly effective for the production of biodiesel where the high fatty acid methyl ester of 98% was achieved. Furthermore, the synthesized catalyst was able to be used up to three times with a slight reduction in catalytic activity. Hence, it can be concluded that the catalyst prepared from MgO/MCM-22 can serve as an outstanding alternative catalyst for biodiesel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.