Fluorescence correlation spectroscopy (FCS) is a sophisticated and an accurate analytical technique used to study the diffusion of molecules in a solution at the single-molecule level. FCS is strongly affected by many factors such as the stability of the excitation power, photochemical processes, mismatch between the refractive indices, and variations in the cover glass thickness. We have studied FCS near the surface of a cover glass by using rhodamine 123 as a fluorescent probe and have observed that the surface has a strong influence on the measurements. The temporal autocorrelation of FCS decays with two characteristic times when the confocal detection volume is positioned near the surface of the cover glass. As the position of the detection volume is moved away from the surface, the FCS autocorrelation becomes one-component decaying; the characteristic time of the decay is the same as the faster-decaying component in the FCS autocorrelation near the surface. This observation suggests that the faster component can be attributed to the free diffusion of the probe molecules in the solution, while the slow component has its origin from the interaction between the probe molecules and the surface. We have characterized the surface contribution to the FCS measurements near the surface by changing the position of the detection volume relative to the surface. The influence of the surface on the diffusion of the probe molecules was monitored by changing the chemical properties of the surface. The surface contribution to the temporal autocorrelation of the FCS strongly depends on the chemical nature of the surface. The hydrophobicity of the surface is a major factor determining the surface influence on the free diffusion of the probe molecules near the surface.
ABSTRACT. Fluorescence correlation spectroscopy (FCS) is an emerging fluorescence technique used to study the dynamics of proteins on a millisecond to microsecond time scale at the single-molecule level. Solution pH-modulated protein conformational changes can be manifested by binding rate, fluorescence lifetime, and binding specificity of a probe molecule. The fluorescence lifetime of Nile red (NR) bound to apomyoglobin (apoMb) was measured to be 6 ± 0.3 ns, much longer than that in water solution (2.9 ± 0.2 ns). As the unfolding population of apoMb increased by lowering pH of solution, the fraction for the longer lifetime of NR decreased with an increasing fraction for the shorter lifetime of NR in water. Unlike 1-anilino-8-naphthalene sulfonic acid, which has many lifetimes due to nonspecific binding to the unfolded apoMb, NR bound to apoMb possesses only a single lifetime. These results suggest that NR binds specifically to native apoMb and thus can be utilized to probe the folding/unfolding dynamics of apoMb using FCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.