Countries in south east Asia are mostly experiencing tropical climate conditions. Therefore, the use of the air conditioning has been increased to reduce the tension and achieve thermal comfort inside the buildings. In order to reduce the energy consumption, thermal insulation has been introduced to lower down the indoor temperature. The main objective of this study is to determine the optimum thickness of the glass wool insulation. To conduct the study, a wooden room model is built based on the classroom that located at one of the Malaysian universities. The thicknesses of the glass wool insulation used in the experiment is 25 mm (one layer), 50 mm (two layers) and 75 mm (three layers). According to the results, the maximum temperature reduction for one layer of insulation is 1.0°C. Two layers of insulation reduces the indoor temperature by 1.3°C followed by the reduction of 1.5°C after applying three layers of insulation. The convection coefficient outside and inside is determined to calculate the heat flux of the roof with different insulation thickness. The heat flux gained by the roof reaches the highest value at 1 pm which is 0.648 W/m² without insulation. The heat flux has been reduced to 0.629 W/m² after applying one layer of glass wool insulation. The heat flux gained by the roof is further reduced to 0.573 W/m² and 0.518 W/m² when two and three layers of insulation are applied, respectively. Throughout the experiment, the temperature inside the room is reduced with the increase of the insulation thickness. Two layers of glass wool insulation has been selected as the optimum insulation thickness which is validated after performing calculation using the polynomial function as well as the cost analysis. Two layers of glass wool insulation yields a 27.40% of ROI per annum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.