Background The exact number of mosquito species relevant to human health is unknown, posing challenges in understanding the scope and breadth of vector–pathogen relationships, and how resilient mosquito vector–pathogen networks are to targeted eradication of vectors. Methods We performed an extensive literature survey to determine the associations between mosquito species and their associated pathogens of human medical importance. For each vector–pathogen association, we then determined the strength of the associations (i.e., natural infection, lab infection, lab dissemination, lab transmission, known vector). A network analysis was used to identify relationships among all pathogens and vectors. Finally, we examined how elimination of either random or targeted species affected the extinction of pathogens. Results We found that 88 of 3578 mosquito species (2.5%) are known vectors for 78 human disease-causing pathogens; however, an additional 243 species (6.8%) were identified as potential or likely vectors, bringing the total of all mosquitos implicated in human disease to 331 (9.3%). Network analysis revealed that known vectors and pathogens were compartmentalized, with the removal of six vectors being enough to break the network (i.e., cause a pathogen to have no vector). However, the presence of potential or likely vectors greatly increased redundancies in the network, requiring more than 41 vectors to be eliminated before breaking the network. Conclusion Although < 10% of mosquitoes are involved in transmitting pathogens that cause human disease, our findings point to inherent robustness in global mosquito vector–pathogen networks. Graphical Abstract
Urban ecosystems are a patchwork of habitats that host a broad diversity of animal species. Insects comprise a large portion of urban biodiversity which includes many pest species, including those that transmit pathogens. Mosquitoes (Diptera: Culicidae) inhabit urban environments and rely on sympatric vertebrate species to complete their life cycles, and in this process transmit pathogens to animals and humans. Given that mosquitoes feed upon vertebrates, they can also act as efficient samplers that facilitate detection of vertebrate species that utilize urban ecosystems. In this study, we analyzed DNA extracted from mosquito blood meals collected temporally in multiple neighborhoods of the San Juan Metropolitan Area, Puerto Rico to evaluate the presence of vertebrate fauna. DNA was collected from 604 individual mosquitoes that represented two common urban species, Culex quinquefasciatus (n = 586) and Aedes aegypti (n = 18). Culex quinquefasciatus fed on 17 avian taxa (81.2% of blood meals), seven mammalian taxa (17.9%), and one reptilian taxon (0.85%). Domestic chickens dominated these blood meals both temporally and spatially, and no statistically significant shift from birds to mammals was detected. Aedes aegypti blood meals were from a less diverse group, with two avian taxa (11.1%) and three mammalian taxa (88.9%) identified. The blood meals we identified provided a snapshot of the vertebrate community in the San Juan Metropolitan Area and have potential implications for vector-borne pathogen transmission.
Mosquito community dynamics in urban areas are influenced by an array of both social and ecological factors. Human socioeconomic factors (SEF) can be related to mosquito abundance and diversity as urban mosquito development sites are modified by varying human activity, e.g., level of abandoned structures or amount of accumulated trash. The goal of this study was to investigate the relationships among mosquito diversity, populations of Aedes aegypti, and SEF in a tropical urban setting. Mosquitoes were collected using BG Sentinel 2 traps and CDC light traps during three periods between late 2018 and early 2019 in San Juan, Puerto Rico, and were identified to species. SEFs (i.e. median household income, population density, college-level educational attainment, unemployment, health insurance coverage, percentage of households below the poverty line, amount of trash and level of abandoned homes) were measured using foot surveys and U.S. Census data. We found 19 species with the two most abundant species being Culex quinquefasciatus (n = 10 641, 87.6%) and Ae. aegypti (n = 1558, 12.8%). We found a positive association between Ae. aegypti abundance and mosquito diversity, which were both negatively related to SES and ecological factors. Specifically, lower socioeconomic status neighborhoods had both more Ae. aegypti and more diverse communities, due to more favorable development habitat, indicating that control efforts should be focused in these areas.
Aumentos en la ocurrencia y persistencia de sequías alrededor del mundo estimulan el entendimiento de sus efectos en las poblaciones naturales y funcionamiento del ecosistema. El principal resultado de las sequías en los ríos es la fragmentación del ecosistema riverino en pozas aisladas a medida que el flujo y la profundidad del agua disminuyen. Hay estudios limitados sobre la respuesta de los tricópteros a reducciones en niveles de agua y su efecto en el funcionamiento del ecosistema. El objetivo de este estudio fue evaluar como reducciones en niveles del agua, similar a las asociadas con sequías, influencian la alimentación y comportamiento conspecífico de Phylloicus pulchrus. Reducciones de pozas en laboratorio simulando condiciones naturales fueron empleadas por dos semanas. Cuatro acuarios plásticos rectangulares fueron llenados a una tercera parte con agua aereada de la quebrada. Dentro de cada acuario se colocaron diez cámaras plásticas circulares (con aperturas de malla) con hojas senescentes de Guarea guidonea. Se simularon dos niveles de pozas (normal y bajo) con dos tratamientos (experimental y control). Las cámaras experimentales (n=20) contenían larvas del cuarto estadío (n=80, 40=normal, 40=bajo) mientras que las del control (n=20) no. Se evaluó el efecto de la reducción de pozas en la pérdida de masa de las hojas, interacciones agresivas (>25 % de su envoltura removida) y mortalidad larval. La reducción en el nivel de las pozas aumentó la pérdida de masa de las hojas (ANOVA: F=5.17, p=0.03), interacciones agresivas (Chi cuadrado: x2=6.24, n=80, p= 0.01), y mortalidad larval (Chi square: x2=4.51, n=80, p= 0.03). Este estudio muestra la respuesta temprana de un tricóptero tropical a una señal abiótica de un cambio ambiental drástico. Esta investigación contribuye al escaso conocimiento sobre el comportamiento de procesamiento de hojarasca en larvas de tricópteros durante etapas tempranas de reducciones de flujo, como las causadas por sequías.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.