BackgroundDengue fever, a mosquito-borne disease, is associated with illness of varying severity in countries in the tropics and sub tropics. Dengue cases continue to be detected more frequently and its geographic range continues to expand. We report the largest documented laboratory confirmed circulation of dengue virus in parts of Kenya since 1982.MethodsFrom September 2011 to December 2014, 868 samples from febrile patients were received from hospitals in Nairobi, northern and coastal Kenya. The immunoglobulin M enzyme linked immunosorbent assay (IgM ELISA) was used to test for the presence of IgM antibodies against dengue, yellow fever, West Nile and Zika. Reverse transcription polymerase chain reaction (RT-PCR) utilizing flavivirus family, yellow fever, West Nile, consensus and sero type dengue primers were used to detect acute arbovirus infections and determine the infecting serotypes. Representative samples of PCR positive samples for each of the three dengue serotypes detected were sequenced to confirm circulation of the various dengue serotypes.ResultsForty percent (345/868) of the samples tested positive for dengue by either IgM ELISA (14.6 %) or by RT-PCR (25.1 %). Three dengue serotypes 1–3 (DENV1-3) were detected by serotype specific RT-PCR and sequencing with their numbers varying from year to year and by region. The overall predominant serotype detected from 2011–2014 was DENV1 accounting for 44 % (96/218) of all the serotypes detected, followed by DENV2 accounting for 38.5 % (84/218) and then DENV3 which accounted for 17.4 % (38/218). Yellow fever, West Nile and Zika was not detected in any of the samples tested.ConclusionFrom 2011–2014 serotypes 1, 2 and 3 were detected in the Northern and Coastal parts of Kenya. This confirmed the occurrence of cases and active circulation of dengue in parts of Kenya. These results have documented three circulating serotypes and highlight the need for the establishment of active dengue surveillance to continuously detect cases, circulating serotypes, and determine dengue fever disease burden in the country and region.
BackgroundSusceptibility of Ae. aegypti mosquito to dengue virus (DENV) varies geographically and can be influenced by climatic factors such as temperature, which affect the incidence, seasonality and distribution of vector-borne diseases. The first outbreak of dengue fever (DF) in Kenya occured in 1982 in the coastal towns of Malindi and Kilifi. Unlike Nairobi where no active dengue transmission has been reported, DF is currently re-emerging at the Coast causing major outbreaks. This study investigated the vector competence of Ae. aegypti populations from two urban areas, Kilifi (Coast of Kenya) and Nairobi (Central Kenya), for DEN-2 virus and the influence of temperature on the same.MethodsFour-day old adult female Ae. aegypti mosquitoes collected as eggs from the two sites were exposed to defibrinated sheep blood mixed with DEN-2 virus (105.08 PFU/ml) using a membrane feeder. Half of the exposed mosquitoes were incubated at high temperature (30°C) and the other half at low temperature (26°C), and every 7 days up to day 21 post-infection 30% of the exposed mosquitoes were randomly picked, individually dissected, separated into abdomen and legs, and tested for midgut and disseminated infection, respectively, including virus quantification by plaque assay using Vero cells.ResultsNairobi mosquito populations exhibited significantly higher midgut infection rates (16.8%) compared to the Kilifi population (9%; p = 0.0001). Midgut infection rates among the populations varied with temperature levels with a significantly higher infection rate observed for Nairobi at high (21.3%) compared to low temperature (12.0%; p = 0.0037). Similarly, for the Kilifi population, a significantly higher infection rate was recorded at high (11.6%) relative to low temperature (6.8%; p = 0.0162). It is however, noteworthy that disseminated infection was higher among the Kilifi mosquito population (40.7%) than in Nairobi mosquitoes (10.3%; p < 0.0001).ConclusionThe findings show a clear inherent difference between the two populations in their ability to develop disseminated infection with high temperature having an added effect of enhancing vector competence. Therefore, the inherent difference among the two populations of Ae. aegypti coupled with prevailing ambient temperature could partly explain the distribution of dengue 2 virus between the Coastal and Nairobi regions in Kenya.
On the last week of May of 2018, a community-based syndromic surveillance system detected mass abortions and deaths of young livestock in northeastern Kenya. Two weeks later, Rift Valley fever (RVF) was confirmed in humans presenting with febrile illness and hemorrhagic syndrome in the same region. A joint animal and human response team carried out an investigation to characterize the outbreak and identify drivers of disease transmission. Here, we describe the outbreak investigation and findings. A total of 106 human cases were identified in the months of May and June 2018: 92% (98) and 8% (8) of these cases occurring in the northern and western regions of Kenya, respectively. Seventy-six (72%) were probable cases, and 30 (28%) were laboratory confirmed by ELISA and/or PCR. Among the confirmed cases, the median age was 27.5 years (interquartile range = 20), and 60% (18) were males. Overall, the case fatality rate was 7% (n = 8). The majority of the confirmed cases, 19 (63%), reported contact with livestock during slaughter and consumption of meat from sick animals. All confirmed cases had fever, 40% (12) presented with hemorrhagic syndrome, and 23% (7) presented with jaundice. Forty-three livestock herds with at least one suspect and/or confirmed animal case were identified. Death of young animals was reported in 93% (40) and abortions in 84% (36) of livestock herds. The outbreak is indicative of the emergence potential of RVF in traditionally high-and low-risk areas and the risk posed by zoonosis to livestock keepers.
Biological phenotypes of tri-segmented arboviruses display characteristics that map to mutation/s in the S, M or L segments of the genome. Plaque variants have been characterized for other viruses displaying varied phenotypes including attenuation in growth and/or pathogenesis. In order to characterize variants of Bunyamwera and Ngari viruses, we isolated individual plaque size variants; small plaque (SP) and large plaque (LP) and determined in vitro growth properties and in vivo pathogenesis in suckling mice. We performed gene sequencing to identify mutations that may be responsible for the observed phenotype. The LP generally replicated faster than the SP and the difference in growth rate was more pronounced in Bunyamwera virus isolates. Ngari virus isolates were more conserved with few point mutations compared to Bunyamwera virus isolates which displayed mutations in all three genome segments but majority were silent mutations. Contrary to expectation, the SP of Bunyamwera virus killed suckling mice significantly earlier than the LP. The LP attenuation may probably be due to a non-synonymous substitution (T858I) that mapped within the active site of the L protein. In this study, we identify natural mutations whose exact role in growth and pathogenesis need to be determined through site directed mutagenesis studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.