Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning. This task is very complex, as the behaviour of road agents depends on many factors and the number of possible future trajectories can be considerable (multi‐modal). Most prior approaches proposed to address multi‐modal motion prediction are based on complex machine learning systems that have limited interpretability. Moreover, the metrics used in current benchmarks do not evaluate all aspects of the problem, such as the diversity and admissibility of the output. The authors aim to advance towards the design of trustworthy motion prediction systems, based on some of the requirements for the design of Trustworthy Artificial Intelligence. The focus is on evaluation criteria, robustness, and interpretability of outputs. First, the evaluation metrics are comprehensively analysed, the main gaps of current benchmarks are identified, and a new holistic evaluation framework is proposed. Then, a method for the assessment of spatial and temporal robustness is introduced by simulating noise in the perception system. To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework, an intent prediction layer that can be attached to multi‐modal motion prediction models is proposed. The effectiveness of this approach is assessed through a survey that explores different elements in the visualisation of the multi‐modal trajectories and intentions. The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autonomous vehicles, advancing the field towards greater safety and reliability.
We explored unconditional and conditional Generative Adversarial Networks (GANs) in centralized and decentralized settings. The centralized setting imitates studies on large but highly unbalanced skin lesion dataset, while the decentralized one simulates a more realistic hospital scenario with three institutions. We evaluated models’ performance in terms of fidelity, diversity, speed of training, and predictive ability of classifiers trained on the generated synthetic data. In addition, we provided explainability focused on both global and local features. Calculated distance between real images and their projections in the latent space proved the authenticity of generated samples, which is one of the main concerns in this type of applications. The code for studies is publicly available (https://github.com/aidotse/stylegan2-ada-pytorch).
Understanding the scene in front of a vehicle is crucial for self-driving vehicles and Advanced Driver Assistance Systems, and in urban scenarios, intersection areas are one of the most critical, concentrating between 20% to 25% of road fatalities. This research presents a thorough investigation on the detection and classification of urban intersections as seen from onboard front-facing cameras. Different methodologies aimed at classifying intersection geometries have been assessed to provide a comprehensive evaluation of state-of-the-art techniques based on Deep Neural Network (DNN) approaches, including single-frame approaches and temporal integration schemes. A detailed analysis of most popular datasets previously used for the application together with a comparison with ad hoc recorded sequences revealed that the performances strongly depend on the field of view of the camera rather than other characteristics or temporal-integrating techniques. Due to the scarcity of training data, a new dataset is created by performing data augmentation from real-world data through a Generative Adversarial Network (GAN) to increase generalizability as well as to test the influence of data quality. Despite being in the relatively early stages, mainly due to the lack of intersection datasets oriented to the problem, an extensive experimental activity has been performed to analyze the individual performance of each proposed systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.