Therapeutic resistance to trastuzumab caused by dysregulation of long noncoding RNAs (lncRNAs) is a major obstacle to clinical management of HER2-positive breast cancer. To investigate which lncRNAs contribute to trastuzumab resistance, we screened a microarray of lncRNAs involved in the malignant phenotype of trastuzumab-resistant SKBR-3/Tr cells. Expression of the lncRNA GAS5 was decreased in SKBR-3/Tr cells and in breast cancer tissue from trastuzumab-treated patients. Inhibition of GAS5 promoted SKBR-3 cell proliferation, and GAS5 knockdown partially reversed lapatinib-induced inhibition of SKBR-3/Tr cell proliferation. GAS5 suppresses cancer proliferation by acting as a molecular sponge for miR-21, leading to the de-repression of phosphatase and tensin homologs (PTEN), the endogenous target of miR-21. Moreover, mTOR activation associated with reduced GAS5 expression was required to suppress PTEN. This work identifies GAS5 as a novel prognostic marker and candidate drug target for HER2-positive breast cancer.
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that play vital regulatory roles in plant growth, development, and environmental stress responses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to living organisms. To date, a number of conserved and non-conserved miRNAs have been identified to be involved in response to Cd stress in some plant species. However, the miRNA-mediated gene regulatory networks responsive to Cd stress in radish (Raphanus sativus L.) remain largely unexplored. To dissect Cd-responsive miRNAs and their targets systematically at the global level, two small RNA libraries were constructed from Cd-treated and Cd-free roots of radish seedlings. Using Solexa sequencing technology, 93 conserved and 16 non-conserved miRNAs (representing 26 miRNA families) and 28 novel miRNAs (representing 22 miRNA families) were identified. In all, 15 known and eight novel miRNA families were significantly differently regulated under Cd stress. The expression patterns of a set of Cd-responsive miRNAs were validated by quantitative real-time PCR. Based on the radish mRNA transcriptome, 18 and 71 targets for novel and known miRNA families, respectively, were identified by the degradome sequencing approach. Furthermore, a few target transcripts including phytochelatin synthase 1 (PCS1), iron transporter protein, and ABC transporter protein were involved in plant response to Cd stress. This study represents the first transcriptome-based analysis of miRNAs and their targets responsive to Cd stress in radish roots. These findings could provide valuable information for functional characterization of miRNAs and their targets in regulatory networks responsive to Cd stress in radish.
BackgroundRadish (Raphanus sativus L.), is an important root vegetable crop worldwide. Glucosinolates in the fleshy taproot significantly affect the flavor and nutritional quality of radish. However, little is known about the molecular mechanisms underlying glucosinolate metabolism in radish taproots. The limited availability of radish genomic information has greatly hindered functional genomic analysis and molecular breeding in radish.ResultsIn this study, a high-throughput, large-scale RNA sequencing technology was employed to characterize the de novo transcriptome of radish roots at different stages of development. Approximately 66.11 million paired-end reads representing 73,084 unigenes with a N50 length of 1,095 bp, and a total length of 55.73 Mb were obtained. Comparison with the publicly available protein database indicates that a total of 67,305 (about 92.09% of the assembled unigenes) unigenes exhibit similarity (e –value ≤ 1.0e-5) to known proteins. The functional annotation and classification including Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the main activated genes in radish taproots are predominately involved in basic physiological and metabolic processes, biosynthesis of secondary metabolite pathways, signal transduction mechanisms and other cellular components and molecular function related terms. The majority of the genes encoding enzymes involved in glucosinolate (GS) metabolism and regulation pathways were identified in the unigene dataset by targeted searches of their annotations. A number of candidate radish genes in the glucosinolate metabolism related pathways were also discovered, from which, eight genes were validated by T-A cloning and sequencing while four were validated by quantitative RT-PCR expression profiling.ConclusionsThe ensuing transcriptome dataset provides a comprehensive sequence resource for molecular genetics research in radish. It will serve as an important public information platform to further understanding of the molecular mechanisms involved in biosynthesis and metabolism of the related nutritional and flavor components during taproot formation in radish.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-14-836) contains supplementary material, which is available to authorized users.
BackgroundmicroRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood.ResultsWe identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity.ConclusionThis study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or under abiotic stresses.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-017-0983-9) contains supplementary material, which is available to authorized users.
Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development of cancer invasion and metastasis. Many studies have significantly enhanced the knowledge on EMT through the characterization of microRNAs (miRNAs) influencing the signaling pathways and downstream events that define EMT on a molecular level. In this study, we found that miR-143 suppressed EMT. Up-regulating miR-143 enhanced E-cadherin-mediated cell-cell adhesion ability, reduced mesenchymal markers, and decreased cell proliferation, migration, and invasion in vitro. In vivo, the xenograft mouse model also unveiled the suppressive effects of miR-143 on tumor growth. Additionally, we demonstrated that up-regulating extracellular signal regulated kinase 5 (ERK5) was associated with poor prognosis of breast cancer patients. Moreover, we observed an inverse correlation between miR-143 and ERK5 in breast cancer tissues. miR-143 directly targeted seed sequences in the 3'-untranslated regions of ERK5. Furthermore, we revealed that the downstream molecules of glycogen synthase kinase 3 beta (GSK-3β)/Snail signaling were involved in EMT and modulated by ERK5. In summary, our findings demonstrated that miR-143 down-regulated its target ERK5, leading to the suppression of EMT induced by GSK-3β/Snail signaling of breast cancer. © 2015 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.