Bone tissue, by definition, is an organic–inorganic nanocomposite, where metabolically active cells are embedded within a matrix that is heavily calcified on the nanoscale. Currently, there are no strategies that replicate these definitive characteristics of bone tissue. Here we describe a biomimetic approach where a supersaturated calcium and phosphate medium is used in combination with a non-collagenous protein analog to direct the deposition of nanoscale apatite, both in the intra- and extrafibrillar spaces of collagen embedded with osteoprogenitor, vascular, and neural cells. This process enables engineering of bone models replicating the key hallmarks of the bone cellular and extracellular microenvironment, including its protein-guided biomineralization, nanostructure, vasculature, innervation, inherent osteoinductive properties (without exogenous supplements), and cell-homing effects on bone-targeting diseases, such as prostate cancer. Ultimately, this approach enables fabrication of bone-like tissue models with high levels of biomimicry that may have broad implications for disease modeling, drug discovery, and regenerative engineering.
Prostate cancer cells move from their primary site of origin, interact with a distant microenvironment, grow, and thereby cause death. It had heretofore not been possible to selectively inhibit cancer cell motility. Our group has recently shown that inhibition of intracellular activation of Raf1 with the smallmolecule therapeutic KBU2046 permits, for the first time, selective inhibition of cell motility. We hypothesized that simultaneous disruption of multiple distinct functions that drive progression of prostate cancer to induce death would result in advanced disease control. Using a murine orthotopic implantation model of human prostate cancer metastasis, we demonstrate that combined treatment with KBU2046 and docetaxel retains docetaxel's antitumor action, but provides improved inhibition of metastasis, compared with monotherapy. KBU2046 does not interfere with hormone therapy, inclusive of enzalutamide-mediated inhibition of androgen receptor (AR) function and cell growth inhibition, and inclusive of the ability of castration to inhibit LNCaP-AR cell outgrowth in mice. Cell movement is necessary for osteoclast-mediated bone degradation. KBU2046 inhibits Raf1 and its downstream activation of MEK1/2 and ERK1/2 in osteoclasts, inhibiting cytoskeleton rearrangement, resorptive cavity formation, and bone destruction in vitro, with improved effects observed when the bone microenvironment is chemically modified by pretreatment with zoledronic acid. Using a murine cardiac injection model of human prostate cancer bone destruction quantified by CT, KBU2046 plus zoledronic exhibit improved inhibitory efficacy, compared with monotherapy. The combined disruption of pathways that drive cell movement, interaction with bone, and growth constitutes a multifunctional targeting strategy that provides advanced disease control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.