Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is the most commercially important conifer in China, and the Nanjing Forestry University – Fujian Province Chinese fir Cooperation (NJFU – Fujian Cooperation) breeding program has advanced it into the third cycle of selection and breeding. In this paper, we estimated genetic parameters from four sites for 80 half-sib families and summarized previous estimates of genetic parameters in Chinese fir with an objective to propose optimal breeding strategy. Heritability averaged 0.20 and 0.14 for height and diameter at breast height (DBH), respectively, for the four sites. A significant genotype–environment interaction (G × E) for growth was also observed among the four sites, with the greatest interactions between a marginal site and the three central sites in the Fujian Province Chinese fir plantation region. The average estimated type-B genetic correlation between the marginal site and the three central sites was 0.08 for height and –0.09 for DBH. However, the highly productive families were among the most stable across the four sites. The results from this study in combination with summarized genetic parameters from literature were used to discuss and propose an optimal breeding strategy for the third generation of the breeding program for Chinese firs in Fujian Province.
We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an environmental gradient from hill top to bottom. Diameter at breast height (DBH) and tree height data had significant spatial auto-correlations among rows and columns. Adding a firstorder separable autoregressive term more effectively modelled the spatial variation than did the incomplete block (IB) model used for the experimental design. The spatial model also accounted for effects of experimental design factors and greatly reduced residual variances. The spatial analysis relative to the IB analysis improved estimation of genetic parameters with the residual variance reduced 13 and 19% for DBH and tree height, respectively; heritability increased 35 and 51% for DBH and tree height, respectively; and genetic gain improved 3-5%. Fitting global trend and postblocking did not improve the analyses under IB model. The use of a spatial model or combined with a design model is recommended for forest genetic trials, particularly with global trend and local spatial variation of hilly sites.
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is an important timber species native to southern China. While the single, unstructured breeding strategy was employed in the past three cycles of breeding, it is no longer adequate for managing a more advanced breeding population. In this study, we utilized restriction-site-associated DNA-sequencing (RAD-seq) to estimate the genetic diversity of breeding populations and phenotypic values or breeding values to estimate the genetic gain of hundred-grain weight, diameter at breast height, and wood basic density. To achieve a balance between genetic gain and genetic diversity, we combined the multiple populations and core-main populations methods to construct the fourth cycle breeding population. Finally, the fourth cycle breeding population was made up of a core population of 50 individuals with an inbreeding coefficient of ~0, and an additional main population of 183 individuals, with an effective population size of 108. Crossings made within and/or between different trait-targeted subpopulations could facilitate bidirectional gene flow between the core and main populations, depending on the breeding objectives. This structured breeding population of Chinese fir could aim for both short- and long-term genetic gains and has the potential to support the preservation of germplasm resources for future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.