When a human needs to generate a large force, the human will try to apply an impulsive force cooperating whole body. However, exerting impulsive force is one of the most difficult tasks for humanoid robots, because a reaction force caused by the applied impulsive force may bring the humanoid robot down. This paper discusses a humanoid robot motion to generate a large force utilizing an impact. Breaking wooden boards by Karate-chop is taken as a case study because it is a typical example of tasks that utilize impulsive force. A humanoid robot motion for the Karate-chop is carefully designed to maximize the speed of a hand keeping the stability. In order to validate the designed motion, experiments are carried out using a small humanoid robot Fujitsu HOAP-2. In the experiments, three kinds of wooden boards are tested to break by the Karatechop. The strength of wooden boards is estimated striking the boards with a free-falling plummet. Stabilizing control is also applied to the robot in order to stabilize the body after the impact. The experimentation results are reported in the paper.
In the process of intelligent system operation fault diagnosis and decision making, the multi-source, heterogeneous, complex, and fuzzy characteristics of information make the conflict, uncertainty, and validity problems appear in the process of information fusion, which has not been solved. In this study, we analyze the credibility and variation of conflict among evidence from the perspective of conflict credibility weight and propose an improved model of multi-source information fusion based on Dempster-Shafer theory (DST). From the perspectives of the weighting strategy and Euclidean distance strategy, we process the basic probability assignment (BPA) of evidence and assign the credible weight of conflict between evidence to achieve the extraction of credible conflicts and the adoption of credible conflicts in the process of evidence fusion. The improved algorithm weakens the problem of uncertainty and ambiguity caused by conflicts in the information fusion process, and reduces the impact of information complexity on analysis results. And it carries a practical application out with the fault diagnosis of wind turbine system to analyze the operation status of wind turbines in a wind farm to verify the effectiveness of the proposed algorithm. The result shows that under the conditions of improved distance metric evidence discrepancy and credible conflict quantification, the algorithm better shows the conflict and correlation among the evidence. It improves the accuracy of system operation reliability analysis, improves the utilization rate of wind energy resources, and has practical implication value.
The low-carbon economy and sustainable development have become a widespread consensus. Chain supermarkets should pay attention to path optimization in the process of distribution to reduce carbon emissions. This study takes chain supermarkets as the research object, focusing on the optimization of the vehicle routing problem (VRP) in supermarket store distribution. Firstly, based on the concept of cost-effectiveness, we constructed a green and low-carbon distribution route optimization model with the lowest cost. With cost minimization as the objective function, the total distribution cost in the vehicle delivery process includes fixed cost, transportation cost, and carbon emission cost. The carbon emission cost is calculated using the carbon tax mechanism. Secondly, through integrating the Floyd algorithm, the nearest neighbor algorithm, and the insertion algorithm, a fusion heuristic algorithm was proposed for model solving, and an empirical study was conducted using the W chain supermarket in Wuhan as an example. The experimental results show that optimizing distribution routes considering carbon emission cost can effectively reduce carbon emissions. At the same time, it can also reduce the total costs of enterprises and society, thereby achieving greater social benefits at lower costs. The research results provide effective suggestions for chain supermarkets to control carbon emissions during the distribution process.
This work proposes a new literature topic clustering analysis framework, based on which the topics of digital-economy-related studies are condensed. First, we calculated the word vector of keywords using the FastText model, and then the keywords were merged according to semantic similarity. A hierarchical clustering method based on the Jaccard coefficient was employed to cluster the domain documents. Finally, the information gain method was applied to estimate the high-gain feature words for each category of topics. Based on the above framework, 23 categories of research topics were formed. We divided these topics into layers of digital technology, convergence innovation and digital governance, and we constructed a three-level digital economy research framework. Thereafter, the current hot spots and frontier trends were derived based on the number and growth rate of the literature. Our study revealed that the research on digital technology, which is the basic layer of the digital economy, has waned. The field related to the integration and innovation of digital technology and the real economy was the current research focus, among which the results with respect to “New Business Forms in the Digital Age”, “Circular Economy” and “Gig Economy” were abundant. The problems of the unbalanced development of the digital economy and digital monopoly have strengthened research on digital governance. Furthermore, research on “Regional Digital Economy”, “Chinese Digital Economy” and “Data Management” is in its initial stage and is a potential area of future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.