PURPOSE To ascertain if preoperative short-term radiotherapy followed by chemotherapy is not inferior to a standard schedule of long-term chemoradiotherapy in patients with locally advanced rectal cancer. MATERIALS AND METHODS Patients with distal or middle-third, clinical primary tumor stage 3-4 and/or regional lymph node–positive rectal cancer were randomly assigned (1:1) to short-term radiotherapy (25 Gy in five fractions over 1 week) followed by four cycles of chemotherapy (total neoadjuvant therapy [TNT]) or chemoradiotherapy (50 Gy in 25 fractions over 5 weeks, concurrently with capecitabine [chemoradiotherapy; CRT]). Total mesorectal excision was undertaken 6-8 weeks after preoperative treatment, with two additional cycles of CAPOX (intravenous oxaliplatin [130 mg/m2, once a day] on day 1 and capecitabine [1,000 mg/m2, twice a day] from days 1 to 14) in the TNT group and six cycles of CAPOX in the CRT group. The primary end point was 3-year disease-free survival (DFS). RESULTS Between August 2015 and August 2018, a total of 599 patients were randomly assigned to receive TNT (n = 302) or CRT (n = 297). At a median follow-up of 35.0 months, 3-year DFS was 64.5% and 62.3% in TNT and CRT groups, respectively (hazard ratio, 0.883; one-sided 95% CI, not applicable to 1.11; P < .001 for noninferiority). There was no significant difference in metastasis-free survival or locoregional recurrence, but the TNT group had better 3-year overall survival than the CRT group (86.5% v 75.1%; P = .033). Treatment effects on DFS and overall survival were similar regardless of prognostic factors. The prevalence of acute grade III-V toxicities during preoperative treatment was 26.5% in the TNT group versus 12.6% in the CRT group ( P < .001). CONCLUSION Short-term radiotherapy with preoperative chemotherapy followed by surgery was efficacious with acceptable toxicity and could be used as an alternative to CRT for locally advanced rectal cancer.
BackgroundRepresentative data on the gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) in Asian patients is rare, especially in China. This study aims to create a GEP-NENs profile of Chinese patients.MethodsThis was a hospital-based, nation-wide, and multi-center 10-year (2001-2010) retrospective study which collected GEP-NEN patients’ information in tertiary referral hospitals. All 2010 inpatient GEP-NEN cases with confirmed pathology in the selected hospitals were included. The primary GEP-NEN sites were measured and the epidemiological and clinical information of each tumor site were compared.ResultsThe most common primary sites for GEP-NEN were the pancreas (31.5%) and rectum (29.6%), followed by the cardia (11.6%) and body (15.4%) of stomach. Small intestinal and colonic NENs took up a relatively small proportion of all patients. Pancreatic and rectal NENs, rather than cardiac and gastric body NENs, tended to be found in younger (P<0.001), female (P<0.001), urban (P<0.001) residents with a higher education level (P=0.032) and were also diagnosed at earlier stage (P<0.001) and lower grade (P<0.001). Surgery remained the primary treatment method in all groups.ConclusionsMore studies on the commonality and heterogeneity of GEP-NENs are warranted to improve diagnosis efficiencies and treatment outcomes.
Natural cellulose fiber-based materials have been widely used in daily life for a broad application owing to their intrinsic merits such as easy availability, eco-friendly, good processability, and outstanding physical-mechanical properties. Surface modification of natural fibers with nanostructures is an effective strategy to integrate the textile substrates with many favorable functionalities. Here, a green, facile, and universal method is introduced for the in situ growth of γ-cyclodextrin (γ-CD) metal-organic frameworks (MOFs) in cellulose fiber-based materials (CelluMOFs). Compared to the pristine fibers, the resulting CelluMOFs have high porosity with up to 50 times larger specific surface area and enhanced loading capacity to functional molecules (essential oils, antibacterial agents, and active drugs) with 23-36 times higher loading content. The CelluMOFs also exhibit high adsorption capability to volatile organic compounds and carbon dioxide. Moreover, the CelluMOFs textiles loaded with a model drug (doxorubicin) show a steady release profile and deep skin permeation capability. These CelluMOFs combine the advantages of both cellulose fibers and CD-MOFs, which greatly extend their applications in the fragrance industry, antimicrobial, pollutant removal, and biomedical textiles.
In the fragrance and perfume industry, the encapsulation and controlled release of fragrance is important to appeal to consumers and promote the quality of products. Here, we demonstrate that porous metal–organic frameworks (MOFs) can effectively encapsulate and release fragrant molecules in a controlled manner. The incorporation of functional groups into MOFs can improve the adsorption and release behavior of fragrant molecules. We find that polar ester‐type fragrances exhibit higher adsorption on polar hydroxyl‐functionalized MOF [UiO‐66‐(OH)2] than on nonpolar MOF (UiO‐66), while nonpolar terpenoid‐type fragrances show no adsorption difference between these two MOFs. The release profiles show that UiO‐66‐(OH)2 can prolong the release of polar fragrances compared with nonpolar fragrances. Both the experimental results and computer molecular modeling demonstrate that the hydroxyl groups in UiO‐66‐(OH)2 can form strong hydrogen binding with different ester fragrances. The releasing kinetics indicates that pore diffusion is the rate‐limiting step of fragrance release from MOFs. © 2018 American Institute of Chemical Engineers AIChE J, 65: 491–499, 2019
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.