In this study, we explored the effects of a laser cleaning process on the surface properties of an aerospace aluminum alloy. We performed surface cleaning on an AA2024 aluminum alloy. Through SEM and EDS analyses on the surface of the aluminum alloy samples after cleaning, the cleaning effect on the aluminum alloy under different laser energy densities was studied. After laser cleaning, residual stress, hardness, friction, and wear tests were performed on the aluminum alloy samples. The experimental results demonstrated that the oxides on the surface of AA2024 could be effectively removed when the laser energy density was 10.5 J/cm2. With an increase in the laser energy density, the friction and wear properties of the AA2024 surface could be improved. Laser cleaning could also generate a new hardened layer and residual tensile stress on the surface of AA2024. This article provides a reference for applying laser cleaning in the aerospace field by studying the structure and mechanical properties of an aluminum alloy after laser cleaning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.