To improve the accuracy of terrain classification during mobile robot operation, an adaptive online terrain classification method based on vibration signals is proposed. First, the time domain and the combined features of the time, frequency, and time–frequency domains in the original vibration signal are extracted. These are adopted as the input of the random forest algorithm to generate classification models with different dimensions. Then, by judging the relationship between the current speed of the mobile robot and its critical speed, the classification model of different dimensions is adaptively selected for online classification. Offline and online experiments are conducted for four different terrains. The experimental results show that the proposed method can effectively avoid the self-vibration interference caused by an increase in the robot’s moving speed and achieve higher terrain classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.