We presently studied (a) insulin effects on protein kinase C (PKC) and (b) effects of transfection-induced, stable expression of PKC isoforms on glucose transport in 3T3/L1 cells. In both fibroblasts and adipocytes, insulin provoked increases in membrane PKC enzyme activity and membrane levels of PKC-alpha and PKC-beta. However, insulin-induced increases in PKC enzyme activity were apparent in both non-down-regulated adipocytes and adipocytes that were down-regulated by overnight treatment with 5 microM phorbol ester, which largely depletes PKC-alpha, PKC-beta, and PKC-epsilon, but not PKC-zeta. Moreover, insulin provoked increases in the enzyme activity of immunoprecipitable PKC-zeta. In transfection studies, stable overexpression of wild-type or constitutively active forms of PKC-alpha, PKC-beta1, and PKC-beta2 failed to influence basal or insulin-stimulated glucose transport (2-deoxyglucose uptake) in fibroblasts and adipocytes, despite inhibiting insulin effects on glycogen synthesis. In contrast, stable overexpression of wild-type PKC-zeta increased, and a dominant-negative mutant form of PKC-zeta decreased, basal and insulin-stimulated glucose transport in fibroblasts and adipocytes. These findings suggested that: (a) insulin activates PKC-zeta, as well as PKC-alpha and beta; and (b) PKC-zeta is required for, and may contribute to, insulin effects on glucose transport in 3T3/L1 cells.
Rotaviruses infect epithelial cells of the small intestine, but the pathophysiology of the resulting severe diarrhea is incompletely understood. Histological damage to intestinal epithelium is not a consistent feature, and in vitro studies showed that intestinal cells did not undergo rapid death and lysis during viral replication. We show that rotavirus infection of Caco-2 cells caused disruption of tight junctions and loss of transepithelial resistance (TER) in the absence of cell death. TER declined from 300 to 22 Omega. cm(2) between 8 and 24 h after infection and was accompanied by increased transepithelial permeability to macromolecules of 478 and 4,000 Da. Distribution of tight junction proteins claudin-1, occludin, and ZO-1 was significantly altered during infection. Claudin-1 redistribution was notably apparent at the onset of the decline in TER. Infection was associated with increased production of lactate, decreased mitochondrial oxygen consumption, and reduced cellular ATP (60% of control at 24 h after infection), conditions known to reduce the integrity of epithelial tight junctions. In conclusion, these data show that rotavirus infection of Caco-2 intestinal cells altered tight junction structure and function, which may be a response to metabolic dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.