Intermolecular interactions in solution play an important role in molecular recognition, which lies at the heart of supramolecular and combinatorial chemistry. Diffusion NMR spectroscopy gives information over such interactions and has become the method of choice for simultaneously measuring diffusion coefficients of multicomponent systems. The diffusion coefficient reflects the effective size and shape of a molecular species. Applications of this technique include the estimation of association constants and mapping the intermolecular interactions in multicomponent systems as well as investigating aggregation, ion pairing, encapsulation, and the size and structure of labile systems. Diffusion NMR spectroscopy can also be used to virtually separate mixtures and screen for specific ligands of different receptors, and may assist in finding lead compounds.
Intermolekulare Wechselwirkungen in Lösung spielen eine wichtige Rolle bei der molekularen Erkennung und sind somit von besonderer Bedeutung in der Supramolekularen und Kombinatorischen Chemie. Die Untersuchung der molekularen Diffusion liefert Aufschlüsse über solche Wechselwirkungen, wobei sich die hochaufgelöste Diffusions‐NMR‐Spektroskopie als Methode der Wahl für die gleichzeitige Bestimmung von Diffusionskoeffizienten in einem Mehrkomponentensystem erwiesen hat. Der Diffusionskoeffizient ist dabei ein Maß für die effektive Größe und Form eines Moleküls. Zu den Anwendungen dieser Technik gehören die Abschätzung von Assoziationskonstanten, die Kartierung intermolekularer Wechselwirkungen in Mehrkomponentensystemen sowie Untersuchungen zum Aggregationsverhalten, zur Ionenpaarbildung, zur Bildung von Einschlussverbindungen und zur Bestimmung der Größe und Struktur von labilen Systemen. Mithilfe der Diffusions‐NMR‐Spektroskopie kann man aber auch Gemische virtuell auftrennen und gezielt nach Liganden für Rezeptoren suchen. Diese Methode kann so bei der Identifizierung von Leitverbindungen von Nutzen sein.
NMR diffusion measurements on 10 different multicomponent hydrogen-bonded assemblies, viz. the three single rosettes SR1-SR3 (1 3 ؒ2a 3 , 1 3 ؒ2b 3 , 1 3 ؒ2c 3 ) the double rosettes DR1-DR5 (3a 3 ؒ2a 6 , 3b 3 ؒ2b 6 , 3c 3 ؒ2a 6 , 3d 3 ؒ2a 6 , 3e 3 ؒ2a 6 ), and DR6 (4a 3 ؒ1 6 ), and the tetrarosette TR (5 3 ؒ2a 12 ) are described. Some of the above rosettes have been previously identified as well-defined assemblies (viz. SR1, DR1-DR3, and TR) using established characterization techniques ( 1 H NMR spectroscopy, X-ray diffraction, and MALDI-TOF MS after Ag ϩ -labeling). The diffusion coefficients of these assemblies were studied and used as a reference for the identification of three new assemblies (DR4-DR6), the characterization of which could not be established unequivocally using other characterization tools. A good correlation was found between the experimental and calculated diffusion coefficients when DR1 was used as a reference. A relatively good correlation was obtained between the effective hydrolytic radii calculated from the diffusion data and those extracted from gas phase-minimized structures with SR1 and DR2 being exceptions. The diffusion measurements show that assembly DR4 is a thermodynamically stable species, while assemblies DR5 and DR6 are less stable and only present to a minor extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.