Aim: To improve the solubility and antibacterial activity of trimethoprim (TMP) by preparing its multicomponent crystals with malic acid (MA). Methods: Multicomponent crystals of TMP-MA were prepared by solvent co-evaporation. The solid-state properties were characterised by powder X-ray diffraction (PXRD), differential thermal analysis (DTA), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) analyses. The solubility was investigated in an aqueous medium, while the antibacterial activity against Escherichia coli was investigated using the agar disk diffusion method. Results: The PXRD pattern of the TMP-MA binary system differed from the starting materials, supporting the formation of a new crystalline phase (equimolar ratio). The DTA thermogram showed a single, sharp, endothermic peak at 212.5 °C attributable to the TMP-MA multicomponent crystal's melting point. FT-IR spectroscopy showed a solid-state interaction involving proton transfer between TMP and MA. The multicomponent crystal displayed a 2.5-fold higher solubility and had increased antibacterial activity compared to TMP alone. Conclusions: The TMP-MA binary system forms salt-type multicomponent crystals that significantly increase solubility and antibacterial activity. Multicomponent crystal formation is a viable technique for modifying the physicochemical properties of active pharmaceutical ingredients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.