Modern heterogeneous CPU-GPU-based mobile architectures, which execute intensive mobile gaming/graphics applications, use software governors to achieve high performance with energy-efficiency. However, existing governors typically utilize simple statistical or heuristic models, assuming linear relationships using a small unbalanced dataset of mobile games; and the limitations result in high prediction errors for dynamic and diverse gaming workloads on heterogeneous platforms. To overcome these limitations, we propose an interpretable machine learning (ML) model enhanced integrated CPU-GPU governor: (1) It builds tree-based piecewise linear models (i.e., model trees) offline considering both high accuracy (low error) and interpretable ML models based on mathematical formulas using a simulatability operation counts quantitative metric. And then (2) it deploys the selected models for online estimation into an integrated CPU-GPU Dynamic Voltage Frequency Scaling governor. Our experiments on a test set of 20 mobile games exhibiting diverse characteristics show that our governor achieved significant energy efficiency gains of over 10% (up to 38%) improvements on average in energy-per-frame with a surprising-but-modest 3% improvement in Frames-per-Second performance, compared to a typical state-of-the-art governor that employs simple linear regression models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.