Convolutional neural networks (CNNs) have been widely deployed in the fields of computer vision and pattern recognition because of their high accuracy. However, large convolution operations are computing intensive and often require a powerful computing platform such as a Graphics Processing Unit (GPU). This makes it difficult to apply CNNs to portable devices. The state-of-the-art CNNs, such as MobileNetV2 and Xception, adopt depthwise separable convolution to replace the standard convolution for embedded platforms, which significantly reduces operations and parameters with only limited loss in accuracy. This highly structured model is very suitable for Field-Programmable Gate Array (FPGA) implementation. In this paper, a scalable high performance depthwise separable convolution optimized CNN accelerator is proposed. The accelerator can be fit into an FPGA of different sizes, provided the balancing between hardware resources and processing speed. As an example, MobileNetV2 is implemented on Arria 10 SoC FPGA, and the results show this accelerator can classify each picture from ImageNet in 3.75ms, which is about 266.6 frames per second. The FPGA design achieves 20x speedup if compared to CPU.Index Terms-convolutional neural network, FPGA, hardware accelerator, MobileNetV2.
This paper presents a field-programmable gate array (FPGA) design of a segmentation algorithm based on convolutional neural network (CNN) that can process light detection and ranging (LiDAR) data in real-time. For autonomous vehicles, drivable region segmentation is an essential step that sets up the static constraints for planning tasks. Traditional drivable region segmentation algorithms are mostly developed on camera data, so their performance is susceptible to the light conditions and the qualities of road markings. LiDAR sensors can obtain the 3D geometry information of the vehicle surroundings with high precision. However, it is a computational challenge to process a large amount of LiDAR data in real-time. In this paper, a convolutional neural network model is proposed and trained to perform semantic segmentation using data from the LiDAR sensor. An efficient hardware architecture is proposed and implemented on an FPGA that can process each LiDAR scan in 17.59 ms, which is much faster than the previous works. Evaluated using Ford and KITTI road detection benchmarks, the proposed solution achieves both high accuracy in performance and real-time processing in speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.