Human immunodeficiency virus (HIV) relies heavily on the host cellular machinery for production of viral progeny. To exploit cellular proteins for replication and to overcome host factors with antiviral activity, HIV has evolved a set of regulatory and accessory proteins to shape an optimized environment for its replication and to facilitate evasion from the immune system. Several cellular pathways are hijacked by the virus to modulate critical steps during the viral life cycle. Thereby, post-translational modifications (PTMs) of viral and cellular proteins gain increasingly attention as modifying enzymes regulate virtually every step of the viral replication cycle. This review summarizes the current knowledge of HIV-host interactions influenced by PTMs with a special focus on acetylation, ubiquitination, and phosphorylation of proteins linked to cellular signaling and viral replication. Insights into these interactions are surmised to aid development of new intervention strategies.
Although most cancer drugs modulate the activities of cellular pathways by changing post-translational modifications (PTMs), surprisingly little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. Here, we introduce a proteomic assay termed decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action (MoA). Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B-cells by over-activating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.
During infection with the human immunodeficiency virus type 1 (HIV-1), latent reservoirs are established, which circumvent full eradication of the virus by antiretroviral therapy (ART) and are the source for viral rebound after cessation of therapy. As these reservoirs are phenotypically indistinguishable from infected cells, current strategies aim to reactivate these reservoirs, followed by pharmaceutical and immunological destruction of the cells. Here, we employed a simple and convenient cell-based reporter system, which enables sample handling under biosafety level (BSL)-1 conditions, to screen for compounds that were able to reactivate latent HIV-1. The assay showed a high dynamic signal range and reproducibility with an average Z-factor of 0.77, classifying the system as robust. The assay was used for high-throughput screening (HTS) of an epigenetic compound library in combination with titration and cell-toxicity studies and revealed several potential new latency reversing agents (LRAs). Further validation in well-known latency model systems verified earlier studies and identified two novel compounds with very high reactivation efficiency and low toxicity. Both drugs, namely N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB) and 2′,3′-difluoro-[1,1′-biphenyl]-4-carboxylic acid, 2-butylhydrazide (SR-4370), showed comparable performances to other already known LRAs, did not activate CD4+ T-cells or caused changes in the composition of PBMCs as shown by flow cytometry analyses. Both compounds may represent an effective new treatment possibility for reversal of latency in HIV-1 infected individuals.
While current combined antiretroviral therapy (cART) allows control of HIV replication in patients and effectively suppresses plasma viral loads, it is unable to target latent reservoirs, which are responsible for virus rebound after discontinuation of therapy. Several histone deacetylase inhibitors (HDACIs) have been shown to target reservoirs and to reactivate latent HIV. While this effect is highly desired, it carries the risk that HIV-1 may be reactivated in tissue compartments were cART concentrations are insufficient and thus leading to de novo infections in this sites. To address this concern, we evaluated the effect of different HDACIs for their ability to reverse HIV latency and to modulate de novo infections. Two of the inhibitors, sodium butyrate and bufexamac, significantly inhibited de novo HIV-1 infection in activated CD4 + T-cells. Transcriptome and proteome analysis indicated global changes of protein abundancies, exhibited reduced proliferation of CD4 + T-cells, and revealed butyrate-based proteasomal degradation of EP300, an important factor for HIV-1 replication. Our results disclose new potential treatment strategies and minimizes the concern of potential reservoir reseeding by HDACIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.