Burkholderia pseudomallei causes a potentially fatal infection called melioidosis. We have developed a nonfluorescent, colorimetric in situ hybridization assay using a specific probe to target 16s rRNA of B. pseudomallei in formalin-fixed, paraffin-embedded infected tissues for diagnostic purposes and to study infectious disease pathology. A 63-base pair DNA probe was synthesized and labeled with digoxigenin by PCR. Probe specificity was confirmed by BLAST analysis and by testing on appropriate microbial controls. The in situ hybridization assay was specifically and consistently positive for B. pseudomallei, showing strongly and crisply stained, single bacillus and bacilli clusters in mainly inflamed tissues in seven human acute melioidosis cases and experimentally infected mouse tissues. Intravascular and extravascular bacilli were detected in both intracellular and extracellular locations in various human organs, including lung, spleen, kidney, liver, bone marrow, and aortic mycotic aneurysm, particularly in the inflamed areas. Intravascular, intracellular bacteria in melioidosis have not been previously reported. Although the identity of infected intravascular leukocytes has to be confirmed, extravascular, intracellular bacilli appear to be found mainly within macrophages and neutrophils. Rarely, large intravascular, extracellular bacillary clusters/emboli could be detected in both human and mouse tissues. B. cepacia and non-Burkholderia pathogens (16 microbial species) all tested negative. Nonpathogenic B. thailandensis showed some cross-hybridization but signals were less intense. This in situ hybridization assay could be usefully adapted for B. pseudomallei identification in other clinical specimens such as pus and sputum.
Abstract. We report a rare case of an asymptomatic latent melioidosis lesion in a posttraumatic splenectomy specimen from a diabetic patient. The 2-cm yellowish, lobulated lesion was found in the splenic parenchyma well away from the traumatized areas. Microscopically, it consisted of a central area of necrosis and exudate surrounded by macrophages, epithelioid cells, lymphocytes, and occasional multinucleated giant cells. Burkholderia bacilli were detected by a novel in situ hybridization (ISH) assay, and confirmed by polymerase chain reaction and sequencing to be Burkholderia pseudomallei. As melioidosis was not suspected initially, bacterial culture was not done but electron microscopy showed morphologically viable and dividing bacilli in the lesion. Moreover, the surgical wound became infected with B. pseudomallei several days post-surgery. After treatment with ceftazidime and trimethoprim/sulfamethoxazole, the wound infection cleared. We believe this could be a unique case of asymptomatic latent melioidosis in the spleen. In endemic countries, chronic granulomas should be investigated for B. pseudomallei infection, and if available, ISH may be helpful for diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.