Structured piezoresistive membranes are compelling building blocks for wearable bioelectronics. However, the poor structural compressibility of conventional microstructures leads to rapid saturation of detection range and low sensitivity of piezoresistive devices, limiting their commercial applications. Herein, a bioinspired MXene-based piezoresistive device is reported, which can effectively boost the sensitivity while broadening the response range by architecting intermittent villus-like microstructures. Benefitting from the two-stage amplification effect of this intermittent architecture, the developed MXene-based piezoresistive bioelectronics exhibit a high sensitivity of 461 kPa −1 and a broad pressure detection range of up to 311 kPa, which are about 20 and 5 times higher than that of the homogeneous microstructures, respectively. Cooperating with the deep-learning algorithm, the designed bioelectronics can effectively capture complex human movements and precisely identify human motion with a high recognition accuracy of 99%. Evidently, this intermittent architecture of biomimetic strategy may pave a promising avenue to overcome the limitation of rapid saturation and low sensitivity in piezoresistive bioelectronics, and provide a general way to promote its largescale applications.
The interfacial effect is widely used to optimize the properties of ferroelectric nanocomposites, however, there is still a lack of direct evidence to understand its underlying mechanisms limited by the nano size and complex structures. Here, taking piezoelectricity, for example, the mechanism of interfacial polarization in barium titanate/poly(vinylidene fluoride‐ran‐trifluoroethylene) (BTO/P(VDF‐TrFE)) nanocomposite is revealed at multiple scales by combining Kelvin probe force microscope (KPFM) with theoretical stimulation. The results prove that the mismatch of permittivity between matrix and filler leads to the accumulation of charges, which in turn induces local polarization in the interfacial region, and thus can promote piezoelectricity independently. Furthermore, the strategy of interfacial polarization to enhance piezoelectricity is extended and validated in other two similar nanocomposites. This work uncovers the mechanism of interfacial polarization and paves newfangled insights to boost performances in ferroelectric nanocomposites.
Piezoelectric wearable electronics, which can sense external pressure, have attracted widespread attention. However, the enhancement of electromechanical coupling performance remains a great challenge. Here, a new solid solution of Ba1−xSrxSn0.09Ti0.91O3 (x = 0.00~0.08) is prepared to explore potential high-performance, lead-free piezoelectric ceramics. The coexistence of the rhombohedral phase, orthorhombic phase and tetragonal phase is determined in a ceramic with x = 0.06, showing enhanced electrical performance with a piezoelectric coefficient of d33~650 pC/N. Furthermore, Ba0.94Sr0.06Sn0.09Ti0.91O3 (BSST) is co-blended with PDMS to prepare flexible piezoelectric nanogenerators (PENGs) and their performance is explored. The effects of inorganic particle concentration and distribution on the piezoelectric output of the composite are systematically analyzed by experimental tests and computational simulations. As a result, the optimal VOC and ISC of the PENG (40 wt%) can reach 3.05 V and 44.5 nA, respectively, at 138.89 kPa, and the optimal sensitivity of the device is up to 21.09 mV/kPa. Due to the flexibility of the device, the prepared PENG can be attached to the surface of human skin as a sensor to monitor vital movements of the neck, fingers, elbows, spine, knees and feet of people, thus warning of dangerous behavior or incorrect posture and providing support for sports rehabilitation.
In article number 2214503, Weiqing Yang, Weili Deng, and co-workers present a strategically designed villus-inspired intermittent architecture that can enhance the piezoresistive performance through a laser-induced manufacturing process. By utilizing the two-stage enhancement of intermittent pillars, the device shows a 20 times increase in sensitivity and 5 times increase in response range than conventional homogeneous microstructures. It represents a significant step forward in the development of commercial bioelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.