Gold nanoparticles (AuNPs) have been widely studied and applied in the field of tumor diagnosis and treatment because of their special fundamental properties. In order to make AuNPs more suitable for tumor diagnosis and treatment, their natural properties and the interrelationships between these properties should be systematically and profoundly understood. The natural properties of AuNPs were discussed from two aspects: physical and chemical. Among the physical properties of AuNPs, localized surface plasmon resonance (LSPR), radioactivity and high X-ray absorption coefficient are widely used in the diagnosis and treatment of tumors. As an advantage over many other nanoparticles in chemicals, AuNPs can form stable chemical bonds with S-and N-containing groups. This allows AuNPs to attach to a wide variety of organic ligands or polymers with a specific function. These surface modifications endow AuNPs with outstanding biocompatibility, targeting and drug delivery capabilities. In this review, we systematically summarized the physicochemical properties of AuNPs and their intrinsic relationships. Then the latest research advancements and the developments of basic research and clinical trials using these properties are summarized. Further, the difficulties to be overcome and possible solutions in the process from basic laboratory research to clinical application are discussed. Finally, the possibility of applying the results to clinical trials was estimated. We hope to provide a reference for peer researchers to better utilize the excellent physicochemical properties of gold nanoparticles in oncotherapy.
Magnetic microrobots can be actuated in fuel-free conditions and are envisioned for biomedical applications related to targeted delivery and therapy in a minimally invasive manner. However, mass fabrication of microrobots with precise propulsion performance and excellent therapeutic efficacy is still challenging, especially in a predictable and controllable manner. Herein, we propose a facile technique for mass production of magnetic microrobots with multiple functions using Spirulina (Sp.) as biotemplate. Core−shell-structured Pd@Au nanoparticles (NPs) were synthesized in Sp. cells by electroless deposition, working as photothermal conversion agents. Subsequently, the Fe 3 O 4 NPs were deposited onto the surface of the obtained (Pd@Au)@Sp. particles via a sol−gel process, enabling them to be magnetically actuated. Moreover, the anticancer drug doxorubicin (DOX) was loaded on the (Pd@Au)/Fe 3 O
This paper presents an innovative driving method for an on-chip robot actuated by permanent magnets in a microfluidic chip. A piezoelectric ceramic is applied to induce ultrasonic vibration to the microfluidic chip and the high-frequency vibration reduces the effective friction on the MMT significantly. As a result, we achieved 1.1 micrometre positioning accuracy of the microrobot, which is 100 times higher accuracy than without vibration. The response speed is also improved and the microrobot can be actuated with a speed of 5.5 mm s(-1) in 3 degrees of freedom. The novelty of the ultrasonic vibration appears in the output force as well. Contrary to the reduction of friction on the microrobot, the output force increased twice as much by the ultrasonic vibration. Using this high accuracy, high speed, and high power microrobot, swine oocyte manipulations are presented in a microfluidic chip.
Piezoelectric polymers with good flexibility have attracted tremendous attention in wearable sensors and energy harvesters. As the piezoelectricity of polymers such as polyvinylidene fluoride (PVDF) and polyvinylidene fluoride− trifluoroethylene [P(VDF−TrFE)] is lower than that of their ceramic counterparts, various approaches have been employed to improve the piezoelectric output of PVDF-based sensors, such as electrospinning, heat annealing, nanoconfinement, polymer blending, and nanoparticle addition. Here, we report two strategies to improve the piezoelectric sensing performance of polymer-based piezoelectric nanofibers, which include the formation of barium titanate (BTO)/P(VDF−TrFE) composite nanofibers and fabrication of penetrated electrodes to enlarge the interfacial area. BTO/P(VDF−TrFE) nanofibers with a BTO weight fraction of 5 wt % exhibit the maximum β-phase crystallinity and piezoelectricity. The piezoelectric output of the BTO/ P(VDF−TrFE) nanofiber mat is significantly improved compared with that of pristine P(VDF−TrFE), which is confirmed by piezoresponse force microscopy (PFM) and compression loading tests. In order to form the penetrated electrodes, oxygen (O 2 ) plasma treatment is employed, followed by an electroless plating process. The BTO/P(VDF−TrFE) nanofibers with penetrated electrodes demonstrate increased dielectric constants and enhanced piezoelectric outputs. A BTO/P(VDF−TrFE) nanofiberbased sensor with penetrated electrodes is capable of discerning the energy of a free-falling ball as low as 0.6 μJ and sensing the movement of a walking ant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.