Cancer nanotherapeutics are rapidly progressing and are being implemented to solve several limitations of conventional drug delivery systems such as nonspecific biodistribution and targeting, lack of water solubility, poor oral bioavailability, and low therapeutic indices. To improve the biodistribution of cancer drugs, nanoparticles have been designed for optimal size and surface characteristics to increase their circulation time in the bloodstream. They are also able to carry their loaded active drugs to cancer cells by selectively using the unique pathophysiology of tumors, such as their enhanced permeability and retention effect and the tumor microenvironment. In addition to this passive targeting mechanism, active targeting strategies using ligands or antibodies directed against selected tumor targets amplify the specificity of these therapeutic nanoparticles. Drug resistance, another obstacle that impedes the efficacy of both molecularly targeted and conventional chemotherapeutic agents, might also be overcome, or at least reduced, using nanoparticles. Nanoparticles have the ability to accumulate in cells without being recognized by P-glycoprotein, one of the main mediators of multidrug resistance, resulting in the increased intracellular concentration of drugs. Multifunctional and multiplex nanoparticles are now being actively investigated and are on the horizon as the next generation of nanoparticles, facilitating personalized and tailored cancer treatment.
A fractured microstructure design: A new type of piezoresistive sensor with ultra-high-pressure sensitivity (0.26 kPa(-1) ) in low pressure range (<2 kPa) and minimum detectable pressure of 9 Pa has been fabricated using a fractured microstructure design in a graphene-nanosheet-wrapped polyurethane (PU) sponge. This low-cost and easily scalable graphene-wrapped PU sponge pressure sensor has potential application in high-spatial-resolution, artificial skin without complex nanostructure design.
The Warburg effect describes a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose even in the presence of oxygen. To better understand how tyrosine kinase signaling, which is commonly increased in tumors, regulates the Warburg effect, we performed phosphoproteomic studies. We found that oncogenic forms of fibroblast growth factor receptor type 1 inhibit the pyruvate kinase M2 (PKM2) isoform by direct phosphorylation of PKM2 tyrosine residue 105 (Y 105 ). This inhibits the formation of active, tetrameric PKM2 by disrupting binding of the PKM2 cofactor fructose-1,6-bisphosphate. Furthermore, we found that phosphorylation of PKM2 Y 105 is common in human cancers. The presence of a PKM2 mutant in which phenylalanine is substituted for Y 105 (Y105F) in cancer cells leads to decreased cell proliferation under hypoxic conditions, increased oxidative phosphorylation with reduced lactate production, and reduced tumor growth in xenografts in nude mice. Our findings suggest that tyrosine phosphorylation regulates PKM2 to provide a metabolic advantage to tumor cells, thereby promoting tumor growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.